Reinterpretations in Experimental Particle Physics

> -Shriyansh Ranjan BS-MS 5th-year

How do you search for a 'Magic' Apple?

src: Google

How do you search for a 'Magic' Apple?

Implement cuts

Meaningful Inference!

What about searching for a 'Super' Apple now?

Reinterpretation of Magic Apple search

Using the result of magic apple search for constraining the super apple "model" now.

Let's now apply the analogy to particle physics analyses

The Standard Model

Standard model describes the fundamental particles in nature and the forces they interact through

Explains a wide range of phenomena such as stability of nucleus of atom, radioactivity, and particle interactions in high-energy experiments

Standard Model of Elementary Particles

LHC and CMS

27 km ring, 100 m underground Collides protons at 13.6 TeV Collision every 25 ns

15×15×21 m detector

Detects the different particles coming out of the collision process

Fun fact: Mosquito (10^23 atoms) : ~TeV energy!

CMS Detector

The collisions produce particles which leave signatures in detectors Algorithms used to reconstruct the particles from the signatures Analyse the particles to infer the process occuring at the time of collision

Credit: Prachurjya Hazarika

CMS Multilepton Search

CMS performed a multilepton search (<u>PRD 105,112007 (2022)</u>) Constraints on VLL τ-like singlet/doublet, Type-III Seesaw, LQ models Additionally model-independent results provided in ~1200 SRs

[Observation, Background, Bkgd Uncertainty]

Want to reinterpret the results from the search on a new VLL μ -like model

However, need to validate my selections!

— Do this part first!

- Validate by reproducing existing limit.
 - 1) Generate VLL doublet signal simulation
 - 2) Implement detector effects using the efficiency maps
 - 3) Implement exact analysis selections from PRD 105,112007 (2022)
 - 4) Implement code to calculate upper limits

Background and Data

Background and data obtained from the search.

However, I need signal!

Simulating Signal

Generate samples via MadGraph, Pythia and Delphes

VLL τ -like signal ($m_{\tau'}$ = 600 GeV)

100k events generated

Bins	Exp (σB) limit	Production (σB)	
198	0.928	0.0149	Not Excluded
198 - 202	0.00264	0.0149	Excluded

This means that a 600 GeV τ ' cannot exist.

However, analysis needs to be done systematically

- All masses
- All available SRs

Efficiency Maps

Used to obtain reco yield from gen-level yield via efficiency maps.

The number on each bin shows probability of the particle with its p_T falling in the corresponding gen p_T bin to be reconstructed as one in the corresponding reco p_T bin.

Separate efficiency maps for:

- e, μ and τ_h (1p and 3p)
- Barrel, transition and endcap region of detector

- e/μ with tau mother and boson mother

- .
- .

Signal Regions

Signal yield calculated for each SR in the S_{T} distribution table.

 S_{T} : $L_{T} + H_{T} + p_{T}^{miss}$

 L_{T} : Scalar p_{T} sum of all selected leptons H_{T} : Scalar p_{T} sum of all jets Events / 200 GeV 107 CMS 10⁶

10⁵

 10^{4}

 10^{3} 10

10

Obs/Exp 1.5 0.5 0 203

Using the signal, bkg and data to obtain limits and constrain model

Obtaining Limits

Upper limit on the cross-section calculated using the S_T and $L_T + p_T^{miss}$ tables compared to the corresponding limits from the paper.

Exclusion at 900 GeV, consistent with reinterpreted limits and those from the paper.

Therefore, my analysis strategy is validated and my results are trustworthy!

VLL Mu-like Analysis

No published limits to the model yet.

Implement the workflow for VLL mu-like model.

Exclusion at 1.2 TeV.

CMS Review paper talks about expected limit at HL-LHC.

Summary

- Many high-energy physics experiments do searches and produce results regularly
- These results can be repurposed to explore other phenomena via reinterpretation
- It is an involved process and contains of following steps:
 - Generate signal for the new model
 - Implement detector effects
 - Put the exact selections as the original search
 - Calculate limits for the model

Thank you!

