

Search for new physics at the Large Hadron Collider

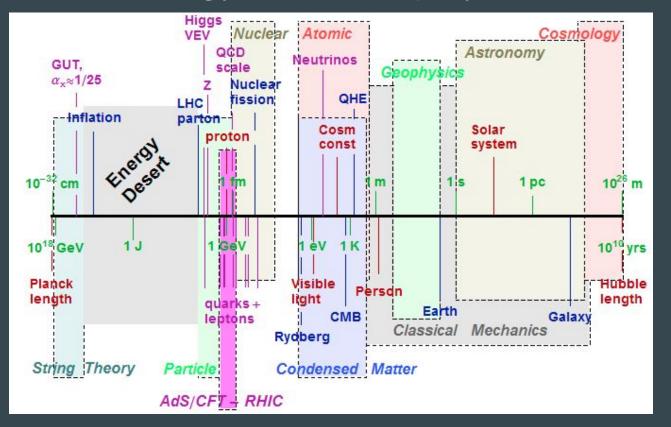
 $\bullet \bullet \bullet$

SHREYAS BAKARE

Search for new physics at the Large Hadron Collider

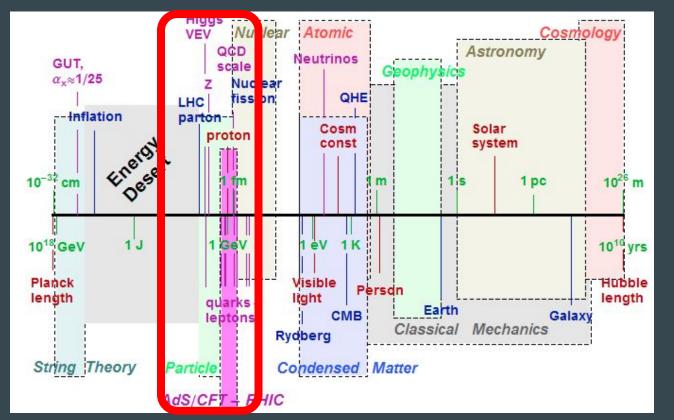
 $\bullet \bullet \bullet$

SHREYAS BAKARE

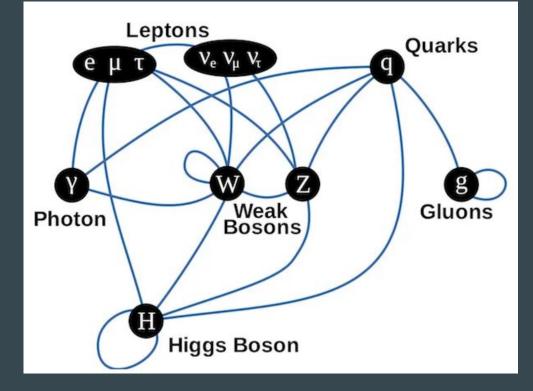

Search for new physics at the Large Hadron Collider

 $\bullet \bullet \bullet$

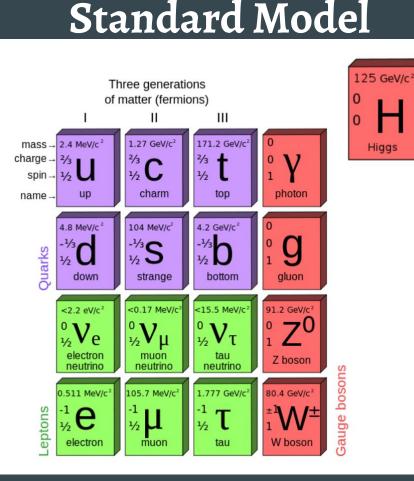
SHREYAS BAKARE


Experimental High Energy Physics

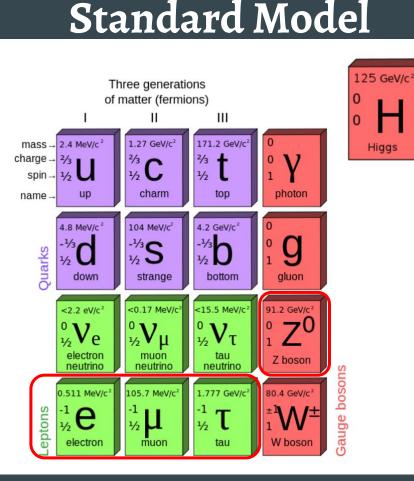
Energy scales in physics



High Energy Physics

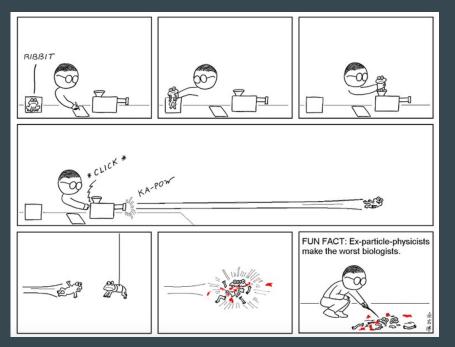


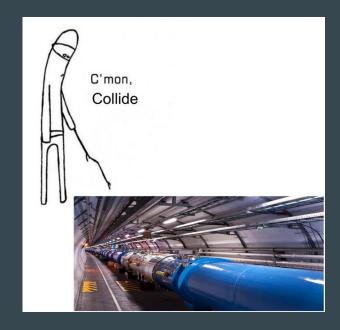
Standard Model


 $-\tfrac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \tfrac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu\bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{\nu}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\tfrac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \tfrac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \tfrac{1}{2c_{-}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\tfrac{2M^{2}}{\sigma^{2}} +$ $\frac{2M}{\sigma}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{\sigma^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{l} \overline{W_{\nu}^{+}W_{\mu}^{-}}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\ddot{\partial}_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\nu}^{-})] \\ \end{array}$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + W^{-}_{\nu}W^{+}_{\nu}W^{+}_{\nu}W^{+$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-}-A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-]$ $\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4(\phi^0)^2\phi^- + 4(\phi^0)^2\phi^$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c_{\mu}^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) - \psi^0]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_-} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W_{\mu}^{-}W_{\mu}^{-}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - 0$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^0_{\mu}) + \frac{1}{2}g^2$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s^{2}_{w}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}\bar{A_{\mu}}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - W^{-}_{\mu}\phi^{+})$ $g^1 s_w^2 A_\mu \tilde{A}_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \bar{\nu}^\lambda - \bar{u}_i^\lambda (\gamma \partial + m_u^\lambda) u_i^\lambda - \bar{u}_i^\lambda (\gamma \partial$ $\bar{d}_{j}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})] +$ $\frac{ig}{4c}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(\bar{u}^\lambda_i\gamma^\mu(\frac{4}{3}s^2_w 1 - \gamma^5) u_j^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^+ [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda}) +$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W^-_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})] + (\bar{d}_j^{\kappa}C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C^{\dagger}_{\lambda\kappa$ $\gamma^5)u_j^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M} \left[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right] \tfrac{g}{2} \tfrac{m_{\epsilon}^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda})] + \tfrac{ig}{2M\sqrt{2}} \phi^+ [-m_d^{\kappa}(\bar{u}_j^{\lambda} C_{\lambda\kappa}(1-\gamma^5) d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M_{\lambda}/2}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}$ $\gamma^5)u_j^\kappa] - \tfrac{g}{2} \tfrac{m_u^\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \tfrac{g}{2} \tfrac{m_d^\lambda}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \tfrac{ig}{2} \tfrac{m_u^\lambda}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda)$ $rac{ig}{2}rac{m_d^\lambda}{M}\phi^0(ar{d}_i^\lambda\gamma^5 d_i^\lambda)+ar{X}^+(\partial^2-M^2)X^++ar{X}^-(\partial^2-M^2)X^-+ar{X}^0(\partial^2-M^2)X^-$

 $\begin{array}{l} \frac{\bar{M}^{2}}{c_{w}^{2}} \tilde{X}^{0} + \bar{Y} \partial^{2} Y + igc_{w} W_{\mu}^{+}(\partial_{\mu} \bar{X}^{0} X^{-} - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W_{\mu}^{+}(\partial_{\mu} \bar{Y} X^{-} - \partial_{\mu} \bar{X}^{+} Y) + igc_{w} W_{\mu}^{-}(\partial_{\mu} \bar{X}^{-} X^{0} - \partial_{\mu} \bar{X}^{0} X^{+}) + igs_{w} W_{\mu}^{-}(\partial_{\mu} \bar{X}^{-} Y - \partial_{\mu} \bar{Y} X^{+}) + igc_{w} Z_{\mu}^{0}(\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu}(\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) - \frac{1}{2}gM[\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \frac{1}{2^{2}} \bar{X}^{0} X^{0} H] + \end{array}$

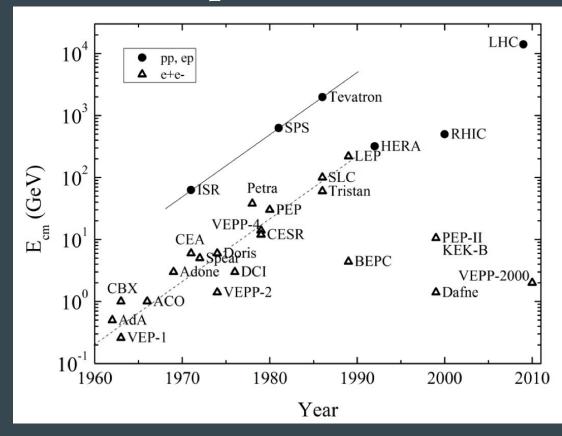
$-rac{1}{2}\partial_ u g^a_\mu \partial_ u g^a_\mu - g_s f^{abc} \partial_\mu g^a_ u g^b_\mu g^c_ u - rac{1}{4}g^2_s f^{abc} f^{adc} g^b_\mu g^c_ u g^d_\mu g^c_ u +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{*}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\tfrac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \tfrac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \tfrac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\tfrac{2M^{2}}{a^{2}} +$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})$ $W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - igs_{w}[\partial_{\nu}A_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\mu}) - A_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + C^{2}M^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\mu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\mu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\mu}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)]$ $W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{-}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{-}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{-}] - g\alpha[H^{3} +$ $\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^- + 4(\phi^0)^2\phi^- + 4(\phi^0)^2\phi^$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c_{\mu}^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) - \psi^0_{\mu}]$ $W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{m}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{m}}{c_{m}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_\mu} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W_{\mu}^{-}W_{\mu}^{-}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2W_{\mu}^{-}[H^2 + (\phi^0)^2 + 2\phi^+] - \frac{1}{4}g^2W_{\mu}^{-}[H^2 + (\phi^0$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s^{2}_{w}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+})$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^{\overline{\lambda}} - \bar{u}_i^\lambda (\gamma \partial + m_\mu^\lambda) u_i^\lambda - \bar{u}_i^\lambda (\gamma \partial$ $\bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4\sigma}Z^{0}_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^{2}_{w}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}_{i}\gamma^{\mu}(\frac{4}{3}s^{2}_{w}-1)+(\bar{u}^{\lambda}_{i}\gamma^{\mu}(4s^{2}_{w}-1)+(\bar{u}^{\lambda}_{w}-1)+(\bar{u}^{\lambda}_{i}\gamma^{\mu$ $1 - \gamma^5) u_j^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^+ [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda}) +$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $(\gamma^5)u_j^{\lambda})] + rac{ig}{2\sqrt{2}}rac{m_e^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - ie^{\lambda}$ $\tfrac{g}{2} \tfrac{m_{\epsilon}^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda})] + \tfrac{ig}{2M\sqrt{2}} \phi^+ [-m_d^{\kappa}(\bar{u}_j^{\lambda} C_{\lambda\kappa}(1-\gamma^5) d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(1+\gamma^5)u_j^{\kappa}) - \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(1+\gamma^5)u_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(1+\gamma^5)u_j^{\kappa})] + \frac{ig}{2M\sqrt{2}$ $\gamma^5)u_i^\kappa] - \frac{g}{2}\frac{m_u^\lambda}{M}H(\bar{u}_j^\lambda u_j^\lambda) - \frac{g}{2}\frac{m_d^\lambda}{M}H(\bar{d}_j^\lambda d_j^\lambda) + \frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_j^\lambda\gamma^5 u_j^\lambda)$ $rac{ig}{2}rac{m_d^\lambda}{M}\phi^0(ar d_i^\lambda\gamma^5 d_i^\lambda)+ar X^+(\partial^2-M^2)X^++ar X^-(\partial^2-M^2)X^-+ar X^0(\partial^2-M^2)X^-+ar X^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^0(\partial^2-M^2)X^0(\partial^2-M^2)X^0(\partial^2-M^2)X^-+A^0(\partial^2-A^0(\partial^2-M^2)X^ \frac{\overline{M}^2}{c^2}$ $X^0 + \overline{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \overline{X}^0 X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0)$ $\overset{w}{\partial}_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$

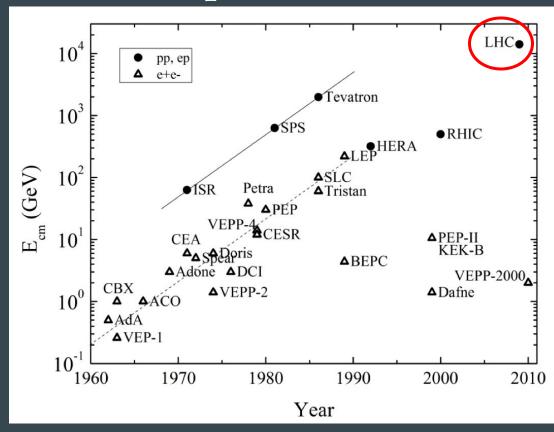

 $\begin{array}{c} \overline{\partial_{\mu}\bar{Y}X^{+}}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}^{'}(\partial_{\mu}\bar{X}^{+}X^{+} + \partial_{\mu}\bar{X}^{-}X^{-}) \\ \overline{\partial_{\mu}\bar{X}^{-}X^{-}}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] + \end{array}$

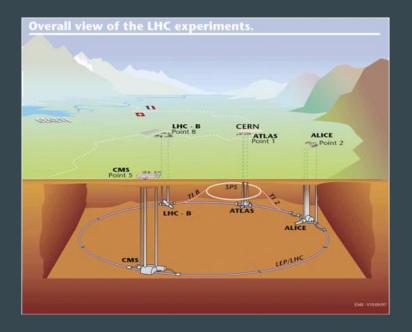


$-rac{1}{2}\partial_ u g^a_\mu \partial_ u g^a_\mu - g_s f^{abc} \partial_\mu g^a_ u g^b_\mu g^c_ u - rac{1}{4}g^2_s f^{abc} f^{adc} g^b_\mu g^c_ u g^d_\mu g^c_ u +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu} H \partial_{$ $\tfrac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \tfrac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \tfrac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\tfrac{2M^{2}}{a^{2}} +$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + C^{2}M^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\mu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\mu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\mu}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)]$ $W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{-}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{-}\phi^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{-}] - g\alpha[H^{3} +$ $\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4\phi^- + 4(\phi^0)^2\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4(\phi^0)^2H^2] - \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^2\phi^- + 4(\phi^0)^2\phi^- + 4(\phi^0)^2\phi^$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c_{\mu}^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) - \psi^0_{\mu}]$ $W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}H) - W^$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{m}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{m}}{c_{m}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1 - 2c_w^2}{2c_\mu} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W_{\mu}^{-}W_{\mu}^{-}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2W_{\mu}^{-}[H^2 + (\phi^0)^2 + 2\phi^+] - \frac{1}{4}g^2W_{\mu}^{-}[H^2 + (\phi^0$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^{\bar{\lambda}} - \bar{u}_i^\lambda (\gamma \partial + m_e^\lambda) u_i^\lambda \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(\bar{u}^\lambda_i\gamma^\mu(\frac{4}{3}s^2_w-1-\gamma^5)e^\lambda)+(\bar{u}^\lambda_i\gamma^\mu(\frac{4}{3}s^2_w-1-\gamma^5)e^\lambda)+(\bar{u}^\lambda_i\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(1+\gamma^5)e^\lambda)+(\bar{e}^\lambda\gamma$ $1 - \gamma^5) u_j^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^+ [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda}) +$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $(\gamma^5)u_j^{\lambda})] + rac{ig}{2\sqrt{2}}rac{m_e^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - ie^{\lambda}$ $\tfrac{g}{2} \tfrac{m_{\epsilon}^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda})] + \tfrac{ig}{2M\sqrt{2}} \phi^+ [-m_d^{\kappa}(\bar{u}_j^{\lambda} C_{\lambda\kappa}(1-\gamma^5) d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M_{\lambda}/2}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}$ $\gamma^5)u_i^\kappa] - \frac{g}{2}\frac{m_u^\lambda}{M}H(\bar{u}_j^\lambda u_j^\lambda) - \frac{g}{2}\frac{m_d^\lambda}{M}H(\bar{d}_j^\lambda d_j^\lambda) + \frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_j^\lambda\gamma^5 u_j^\lambda)$ $rac{ig}{2}rac{m_d^\lambda}{M}\phi^0(ar d_i^\lambda\gamma^5 d_i^\lambda)+ar X^+(\partial^2-M^2)X^++ar X^-(\partial^2-M^2)X^-+ar X^0(\partial^2-M^2)X^-+ar X^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^-+A^0(\partial^2-M^2)X^0(\partial^2-M^2)X^0(\partial^2-M^2)X^0(\partial^2-M^2)X^-+A^0(\partial^2-A^0(\partial^2-M^2)X^ \frac{\overline{M}^2}{c^2}$ $X^0 + \overline{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \overline{X}^0 X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0)$

 $\overset{w}{\partial}_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$

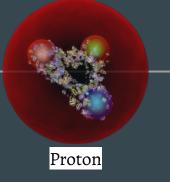

 $\begin{array}{l} \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A^{-}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \\ \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{2\ell}\bar{X}^{0}X^{0}H] + \end{array}$

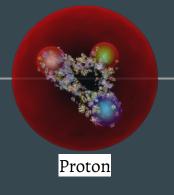



At very high energy collisions, we can probe the fundamental building blocks of nature. We can verify whether these predictions are actually true.

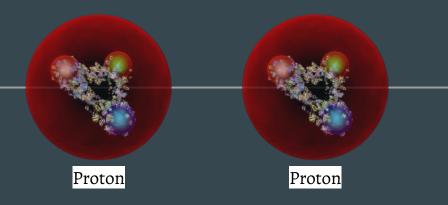
We can also look for the "New Physics" in the collisions, which were proposed to solve some problems of the SM.

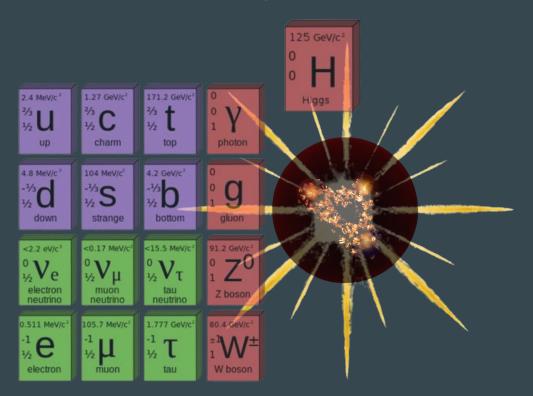
Large Hadron Collider

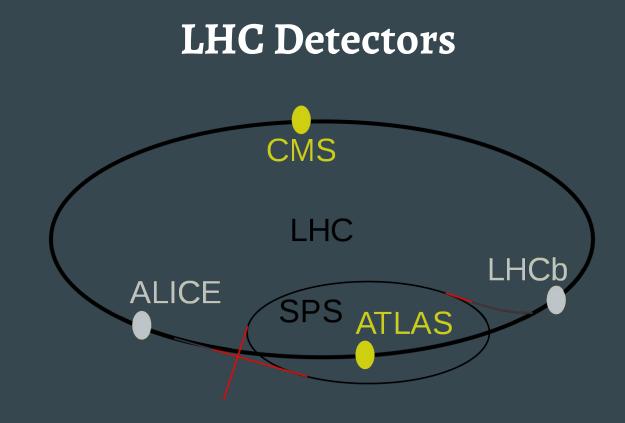


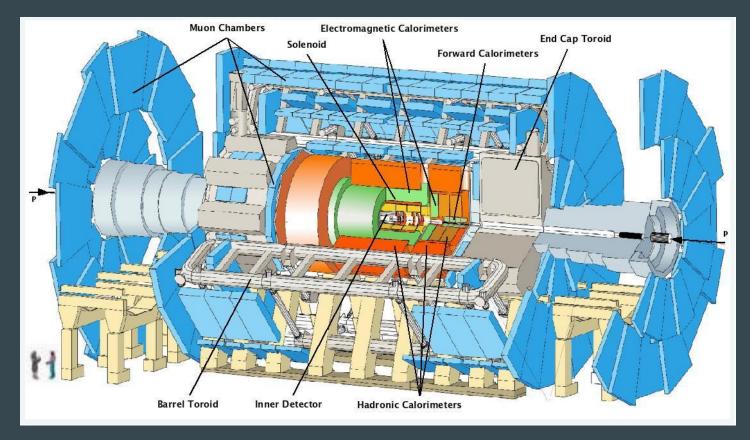

*Pune for size comparison

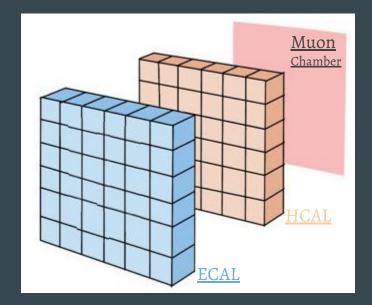
175 m underground

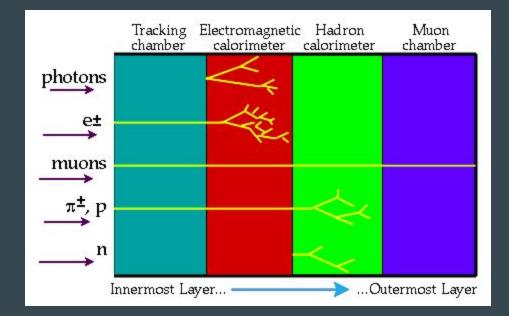

Circumference : 27 km

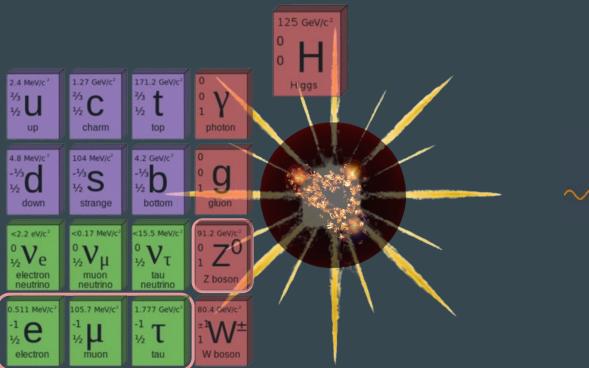






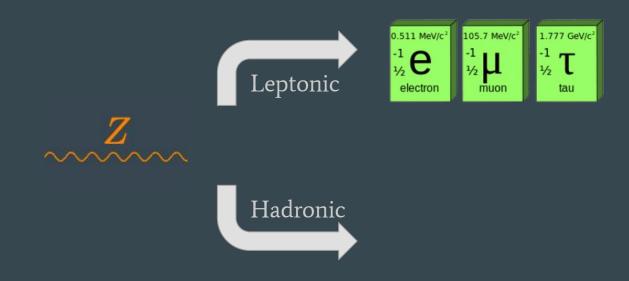


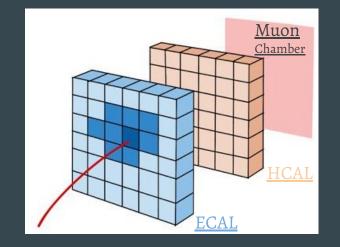

ATLAS/CMS Detector

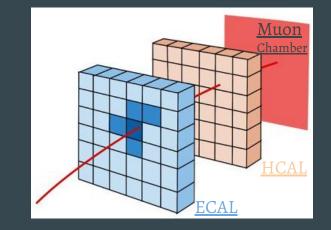


ATLAS/CMS Detector

ATLAS/CMS Detector







Wait!

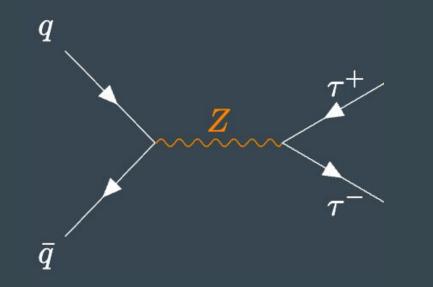
Detector signatures of electrons & muons

Search for new phenomena in 4 lepton final states with the full Run 2 dataset at ATLAS detector at LHC

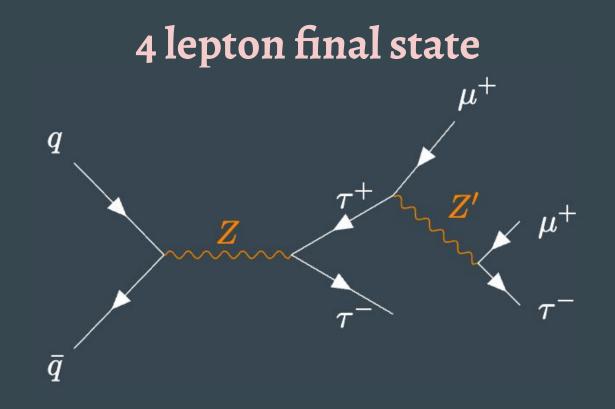
 $\bullet \bullet \bullet$

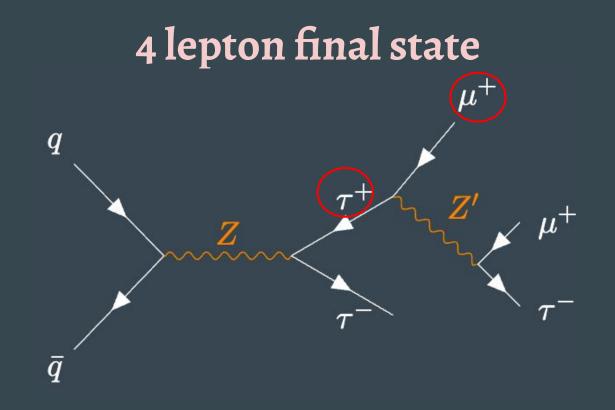
SHREYAS BAKARE

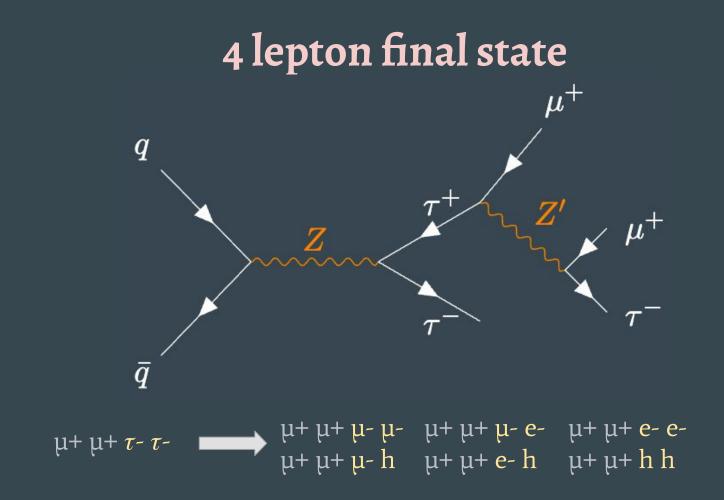
Search for new phenomena in 4 lepton final states with the full Run 2 dataset at ATLAS detector at LHC

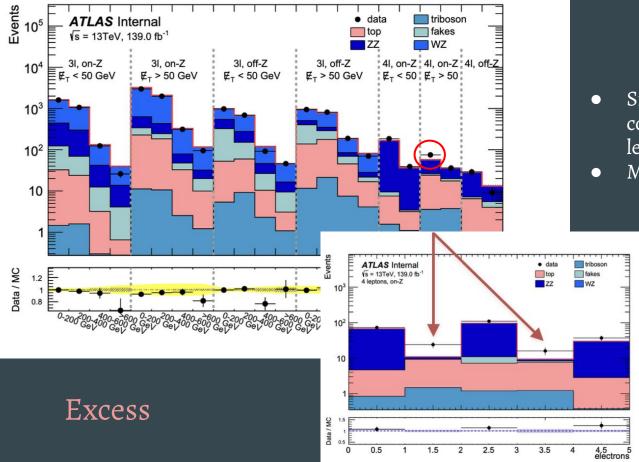

 $\bullet \bullet \bullet$

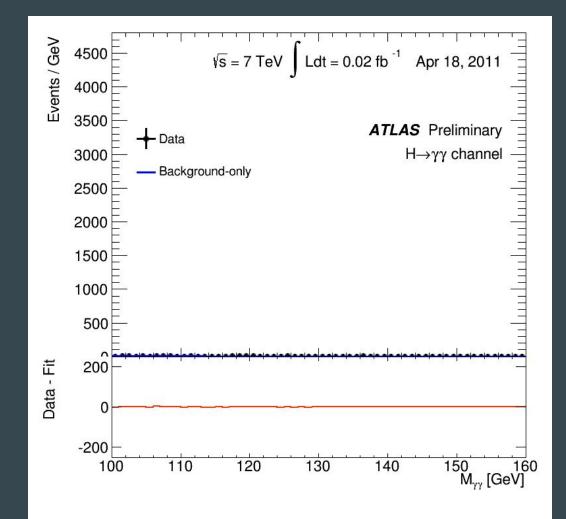
SHREYAS BAKARE

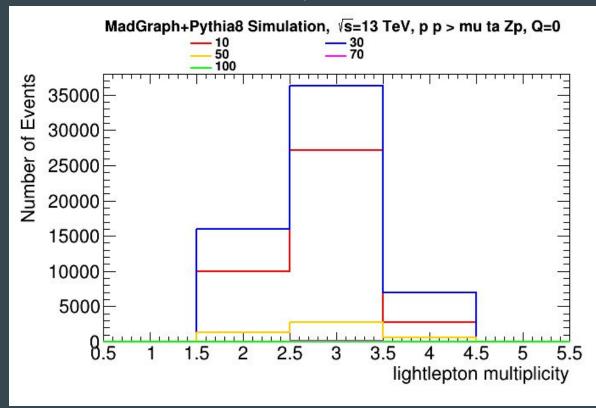


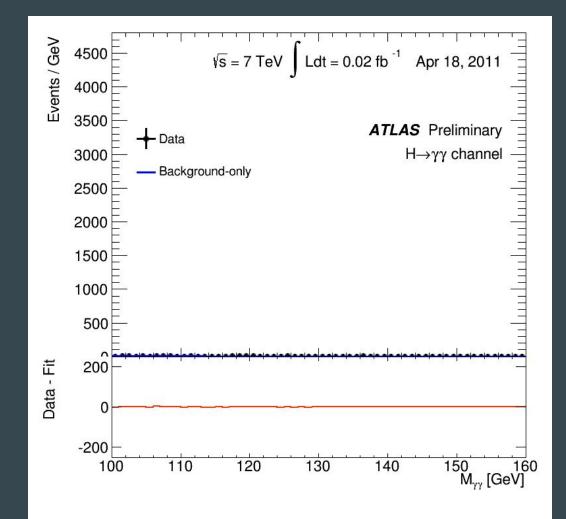


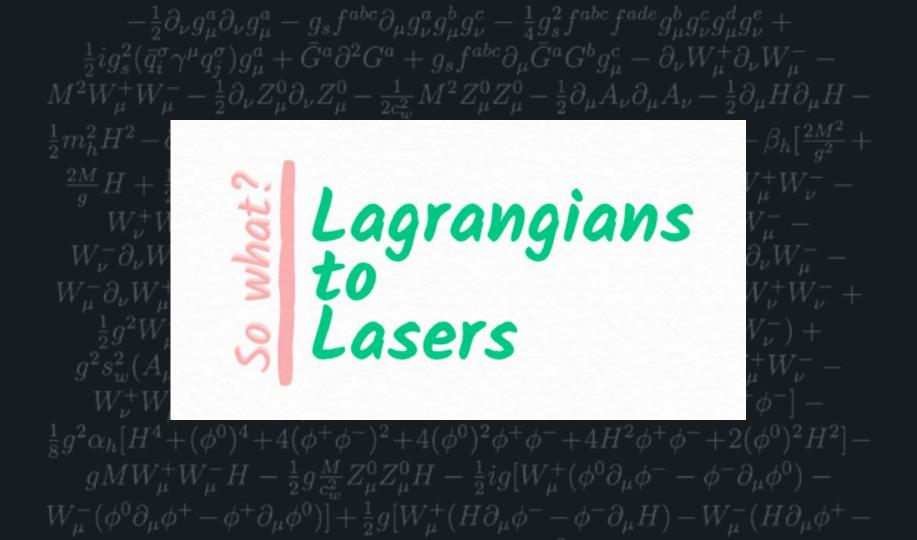



New phenomena μ^+ q au^+ Z'Z $ar{q}$






- Significant excess when considering sub-channels split by lepton flavour.
- Mostly in eeeµ or <mark>eµµµ</mark> events.



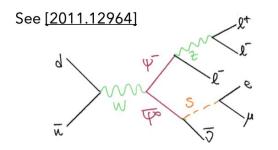
Calculating signal events in run 2 for different Z' masses

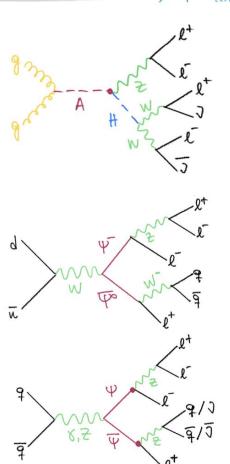
Light Lepton multiplicity (N) for ll Pt cut >5 GeV

 $W_{\nu}^{-} +$

EXTRA SLIDES

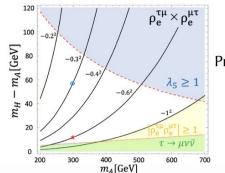
Theoretical models: with Z boson

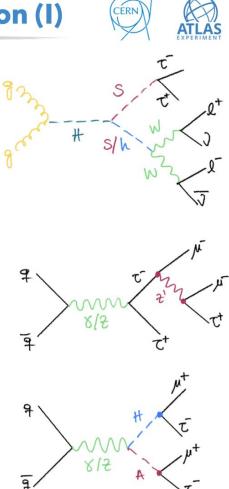



CERN

- Model #1: gg→A→ZH(→WW/ττ) in a 2HDM, where H can be the SM Higgs or a BSM Higgs
- **Model #2:** vector-like leptons with decay in Z boson allowed
 - Singlet and doublet models; single and pair produced (larger cross section predicted for pair produced VLL)
 - It can also accommodate $(g-2)_{\mu/e}$ data

-


- Other decays possible to a new BSM scalar S



Theoretical models: without Z boson (I)

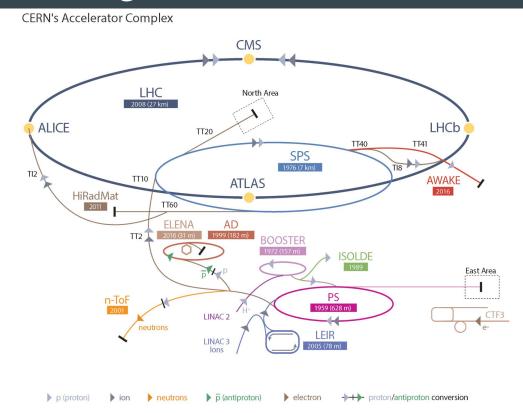
- Model #3: gg→H→Sh/SS→WWττ/WWW
 - Addresses other multilepton tensions
 - See [1912.00699]
- **Model #4:** leptophilic Z' or scalar with flavour-violating couplings
 - Flavour off-diagonal Z' couplings to the μ and τ sectors [satisfies various constraints from LEP e⁺e⁻→e⁺e⁻, the (g-2)_e, ...], or
 - 2HDM model with sizeable couplings to μ and τ, leading as well to μ[±]μ[±]τ[∓]τ[∓] final states
 - Could address the $(g-2)_{\mu}$ tension
 - See [1607.06832] and [1907.09845]

Preferred heavy Higgs masses ~ @(100) GeV and limited below ~ 700 GeV [1907.09845]

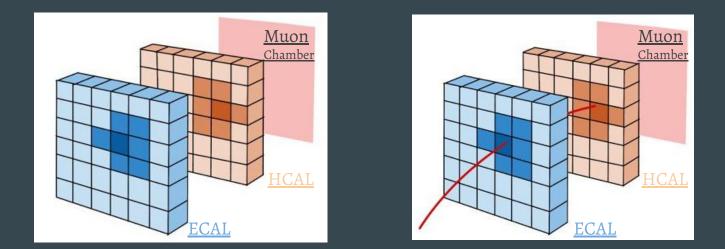
Search for new physics at the Large Hadron Collider

 $\bullet \bullet \bullet$

SHREYAS BAKARE

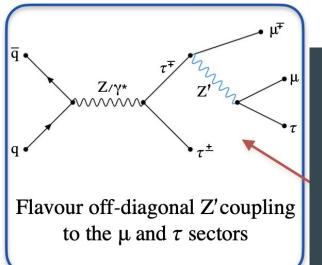

Experimental High Energy Physics The details of the session

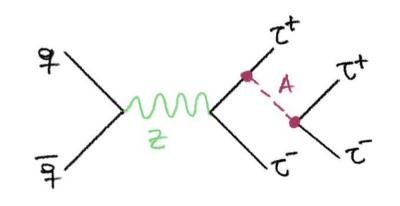
Speaker: Search for new physics at the Large Hadron Collider LHC 106 (6:30 PM)


Abstract:

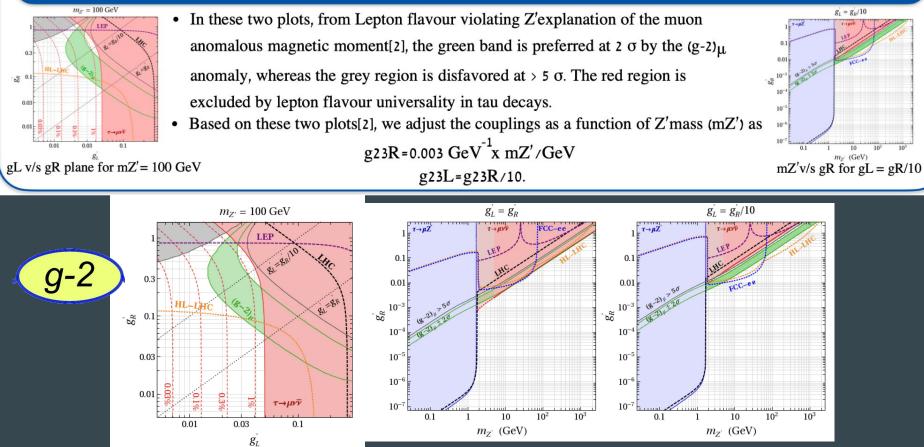
Despite the success of the Standard Model in describing the interactions of elementary particles, observations that suggest the existence of additional phenomena remain. Many theories of physics beyond the Standard Model have been proposed that feature "final states" in high-energy proton-proton collisions with exactly four leptons. In this talk, I will start with the basics of experimental high energy physics and move towards discussing this particular 4-lepton search that targets particular mixed flavor regions. The ideas will be motivated, so there is no need for much background!

Large Hadron Collider




Why not hadronic?

Detector signatures of neutral & charged hadrons


- Model #5: leptophilic Z' or scalar coupling preferentially to τ
 - Could address the $(g-2)_{\mu}$ tension
 - Explore four τ signature

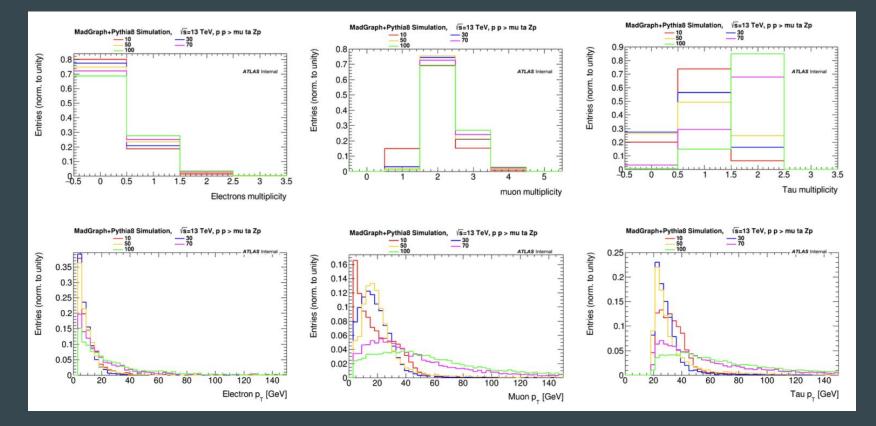
I Mainly worked on p p > $\tau \mu$ Zp Where Zp couples to $\tau \& \mu$ (violating Lepton flavour)

Z' coupling to μ & τ

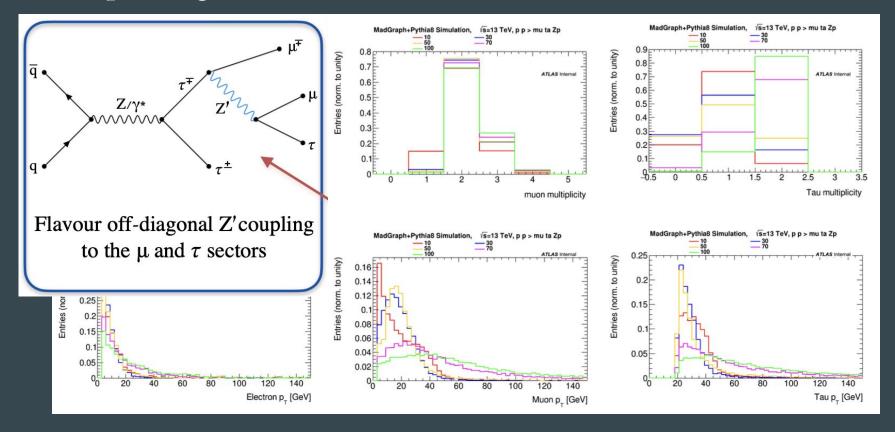
MC generation using MadGraph + Pythia

- First-ever Monte Carlo generation of the p p > τ μ Z process.
- Probing Z mass in the range of 10 GeV to 100 GeV as the cross-section of the process turns out 13.76 fb for mZ =10 GeV whereas 0.25 fb for mZ = 100 GeV.

p p > mu+(-) ta-(+) Zp /h NP<=2 QED<=2</pre>

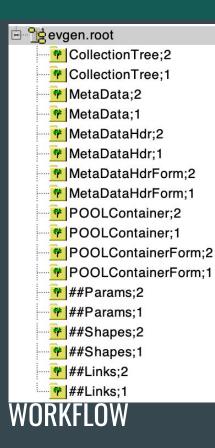

- 1. For MZp = 10 WZp = 5.807750e-05 cross-section (<u>fb</u>)= 35.28
- 2. For MZp = 30 WZp = 1.635278e-03 cross-section (fb)= 31.21

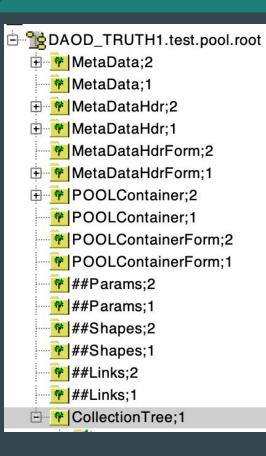
For MZp = 50 WZp = 7.595605e-03 cross-section (<u>fb</u>)= 8.763


3. For MZp = 70 WZp = 2.086114e-02 cross-section (fb)= 1.132

4. For MZp = 100 WZp = 6.084878e-02 cross-section (<u>fb</u>)= 0.3798

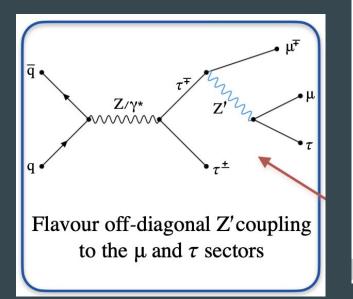
Comparing kinematics as a function of mZ'

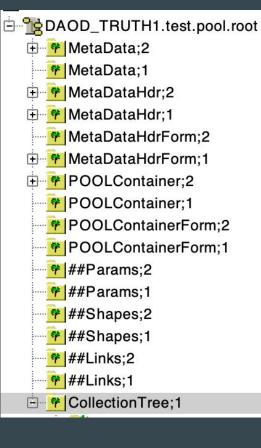

Comparing kinematics as a function of mZ'



Generation of EVGEN.root

Conversion into DAOD file


Conversion into flat ntuple

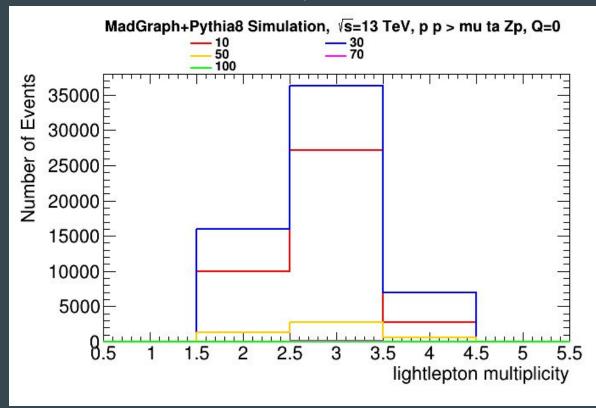


Interesting Problem

TruthTausAuxDyn.eta_vis TruthTausAuxDyn.phi_vis TruthTausAuxDyn.m_vis TruthTausAuxDyn.numCharged TruthTausAuxDyn.numChargedPion TruthTausAuxDyn.numNeutral TruthTausAuxDyn.numNeutralPion TruthTausAuxDyn.IsHadronicTau TruthTausAuxDyn.pt_invis TruthTausAuxDyn.px 🐚 TruthTausAuxDyn.py TruthTausAuxDyn.eta_invis TruthTausAuxDyn.pz 🐚 TruthTausAuxDyn.phi_invis 🐚 TruthTausAuxDyn.e TruthTausAuxDyn.m_invis 🕺 Truth Taus Aux Dyn. Decay Mode Vector TruthTausAuxDyn.pdgld TruthTausAuxDyn.classifierParticleType TruthTausAuxDyn.classifierParticleOrigin

```
11
std::vector<TLorentzVector> TruthAna GenericSelector::HadronicTau(const xAOD::TruthParticleContainer *cont, float pt, float eta,
CUT PDG cut pdg, int pdgid, CUT STATUS cut status, int status, char IsHadronic)
{
  std::vector<TLorentzVector> tlv vec:
  for(auto vcont : *cont){
    float loc px =vcont->px(); float loc py
                                                 =vcont->pv();
    float loc pz =vcont->pz(); float loc e
                                                 =vcont->e() :
    TLorentzVector tlv; tlv.SetPxPvPzE(loc px,loc py,loc pz,loc e);
    int par pdgid=vcont->auxdata<int>("pdgId");
    int par_IsHadronic=vcont->auxdata<char>("IsHadronicTau");
    if( tlv.Pt()<pt )continue:
    if( fabs( tlv.Rapidity() )>eta )continue;
    //special treatment for the H/A bosons
    if( par_pdgid==35 || par_pdgid== 36 || fabs(par_pdgid== 37) || par_pdgid==25 ) par_pdgid=35;
           ( cut pdg==CUT PDG::YES && ( ! (par_pdgid== pdgid ) ) ) continue;
    if
    else if( cut pdg==CUT PDG::ABS && ( ! (fabs(par pdgid)== pdgid ) ) ) continue;
    if (par IsHadronic == IsHadronic) continue;
    if( cut status==CUT STATUS::YES && ( ! (vcont->auxdata<int>("status")== status ) ) ) continue;
    tlv vec.push back(tlv);
  }
  return tlv vec;
```

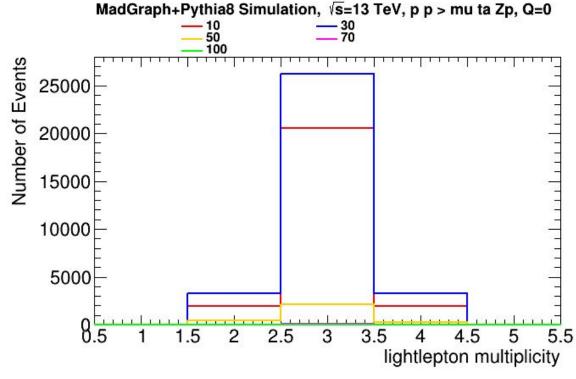
$p p > mu \pm ta \mp Zp$, 4 lep final state Q = 0


 $N = \varepsilon \sigma L$

Light Lepton multiplicity (N) for ll Pt cut >5 GeV

For MZp = 10 Gev, 30 GeV, 50 GeV, 70 GeV & 100 GeV σ = 35.28 fb, 31.21 fb, 8.763 fb, 1.132 fb & 0.3798 fb resp. L = 140 /fb

For e, μ , τ eta < 2.5, τ pt > 5 GeV


Light Lepton multiplicity (N) for ll Pt cut >5 GeV

Integrals of each histograms (w/o SS pairs condition)

MZp	Pt > 5 GeV
10	39901.9
30	59251.2
50	4787.79
70	102.036
100	18.3794

SS pairs: Light Lepton multiplicity (N) for ll Pt cut >5 GeV

Integrals of each histograms (SS pairs)

MZp	Pt > 5 GeV
10	24394.2
30	32765.6
50	2840.39
70	61.688
100	12.1317