Langmuir probe analysis of Plasma

-Shalini Das

4th year BS-MS 14.03.2024 So what is our thought about Plasma?

Fourth state of matter

Ionized Gas

Did you know all ionized gases are not Plasma!?

- A plasma is a *quasineutral* gas of charged and neutral particles
- It exhibits collective behaviour
- Behaves classically, follows maxwell equations

Apply high temperature on gas or high electric field etc.

Criteria to be plasma

Debye length << dimension of the plasma

number N of particles in a Debye sphere >>>1

 $\omega \tau > 1$

Langmuir probe

This following properties are measured

- electron temperature
- electron density
- electric potential of a plasma

Characteristics of Langmuir probe

Typical I-V curve of single langmuir probe, sometimes potential is taken as the difference between the probe and the plasma

- V_{ϕ} = Bias voltage (V_{β}) Plasma voltage (V_{\Box})
- $V_{\beta} < V_{\Box}$: Ion saturation current
- $V_{\beta} > V_{\Box}$: Electron saturation current

Floating potential : I = 0 [linear fit intersection/compared]

 $I = I_o \exp\{-qV_{\phi}/K_{\beta}T\} \quad [\ln I \text{ vs } V_{\phi} - \text{ linear fit to get } I_o \text{ for both electron and Ion saturation current}]$

T is extracted from slope.

Plasma potential = Electron current is 0

Data Analysis

These two fit are for the region where V_{ϕ} is -ve

Linear fit slope, intercept: [4.79379916, -224.61074718] -> Temperature of electron, Ion saturation current Electron Temperature (T) in eV: 11.54161232073355

```
Ion Saturation Current (Iis): -2.768795366795369e-05 A
```


Linear Fit R2: 0.8107224623334592

Exponential Fit R2: 0.9416891696900579

Linear fit intersection = floating potential = 9 V

Electron Saturation Current: 5.770943314143221e-05 A

Plasma Potential (Vp): 11.8V Probe Surface Area (A): 5707963267948965e-06 Plasma Density (n): 2.1052090080498222e+18 Electron Density (n_e):2.1052090080498222e+18

Results

A	В	C	D Temperature of Electron (eV)	
Sheet no.	Electron Saturation Current (A)	Floating Potential (V)		
1	4.79E-06	7	12.86666641	
2	4.79E-06	7	12.86724811	
3	3.76E-06	6	12.34162516	
4	3.66E-06	4.5	13.46663515	

А	В	С	D	E	F
Sheet No.	Electron Saturation Current (A)	Floating Potential (V)	Temperature of Electron (eV)	Plasma Potential (V)	Ion Saturation Current (A)
5	5.77E-05	9	11.54161232	11.8	-2.77E-05

So What!

- Plasma physics reveals insights into cosmic phenomena like star formation and interstellar processes.
- It drives the quest for nuclear fusion as a sustainable energy source by replicating the processes of the sun.
- Plasma is integral to various high-tech applications, including semiconductor manufacturing and medical treatments.
- Research in plasma physics advances space exploration through efficient propulsion systems for spacecraft.
- It contributes to innovative solutions in environmental and material sciences, shaping modern technology and sustainable development.

Current usage other than the above

• Medical Treatments: Cold plasma technology is applied in sterilizing surgical instruments and operating rooms, treating skin diseases, promoting wound healing, and even targeting cancer cells without harming surrounding healthy tissues.

• Environmental Applications: Plasma technology is employed in the treatment of hazardous wastes and the purification of water

• Agriculture: Plasma-activated water and surfaces can enhance seed germination, plant growth etc.

• Weather Modification: Research into using plasma to influence weather patterns, such as cloud seeding to induce rain, is ongoing, though it's a more speculative application at this stage.

Future researches

- High-Power Lasers and Particle Accelerators
- Quantum Plasmas
- Magnetic Reconnection Research
- Ultrafast Plasma Dynamics
- Astrochemistry and Exoplanetary Science

Thank you!