LAGRANGIANS TO LASERS ... (IISERP STUDENTS JOURNAL CLUB)

"SO WHAT?" TALK SERIES

WHAT IT TAKES TO BUILD AN ULTRA-STABLE LASER?

Gautham Upadhyaya 5th year BS-MS Affiliation: IISER, Pune Project student @ PQM Lab, IUCAA, Pune

CAUTION: PHYSICS IN DANGER?

LIV – Lorentz Invariance Violation

Tests

PHYSICAL REVIEW LETTERS 126, 011102 (2021)

Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons

R. Lange[●], N. Huntemann[●], [†]J. M. Rahm[●], C. Sanner, [†]H. Shao, B. Lipphardt[●], Chr. Tamm, S. Weyers[●], and E. Peik[●] *Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany* (Received 13 October 2020; revised 23 November 2020; accepted 15 December 2020; published 6 January We compare two optical clocks based on the ²S_{1/2}(F = 0) → ²D_{3/2}(F = 2) eleverities the ²S_{1/2}(F = 0) → ²F_{7/2}(F = 3) electric octupole (E3) transition of the ²S_{1/2}(F = 0) → ²F_{7/2}(F = 3) electric octupole (E3) transition of the ²S_{1/2}(F = 0) → ²F_{7/2}(F = 3) electric octupole (E3) transition of the ²S_{1/2}(F = 0) → ²C_{7/2}(F = 0) → ²C_{7/2}(

THE DEFINING CONSTANTS OF THE INTERNATIONAL SYSTEM OF UNITS

Defining constant	Symbol	Numerical value	Unit	
hyperfine transition				
frequency of Cs	$\Delta \nu_{\rm Cs}$	9 192 631 770 ?	Hz	
speed of light in vacuum	с	299 792 458 ?	${\rm m~s^{-1}}$	
Planck constant*	h	6.62607015×10^{-34}	$J Hz^{-1}$	
elementary charge*	e	$1.602176634 imes 10^{-19}$	С	
Boltzmann constant*	k	1.380649×10^{-23} ?	$\rm J~K^{-1}$	
Avogadro constant*	N_{A}	6.02214076×10^{23} ?	mol^{-1}	
luminous efficacy	$K_{\rm cd}$	683 ?	$\rm lm W^{-1}$	

*These numbers are from the CODATA 2017 special adjustment. They were calculated from data available before the 1^{st} of July 2017.

 $\Delta v \approx 0.01 \text{Hz}$ $v \approx 10^{14} \text{Hz}$ $\Delta v / v = 10^{-16}$

During the measurements, the frequency of one of the two ytterbium clocks was also determined with highest precision: The frequency, which is 642×10¹² Hz, was determined with an accuracy of 0.08 Hz and represents the most accurate measurement of an optical frequency with caesium clocks to date.

ULTRA-STABLE LASER!

CONTENT OF THE TALK...

>What (is an Ultra-stable Laser)?

> How (to build an Ultra-stable Laser)?

>Why (to build an Ultra-stable Laser)?

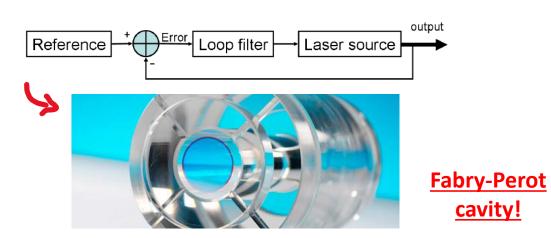
ULTRA-STABLE LASER

- Laser with very low frequency noise.
- Commercial lasers

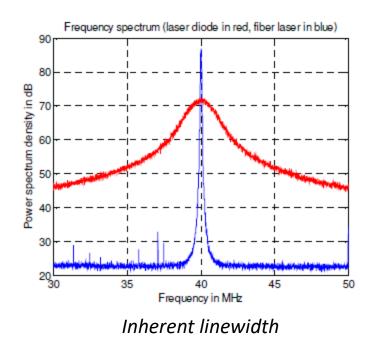
MHz linewidth

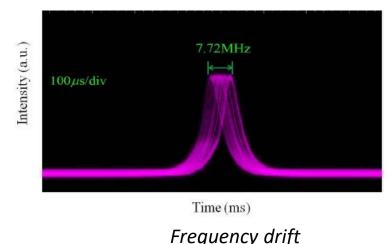
Mode-locked/Feedback Ultra-stable lasers kHz linewidth sub-Hz linewidth - Output freq. spectrum Hz laser spectra - various configurations Hz laser narrow linewidth Off. 22 km Hz laser narrow linewidth On, 22 km -10 -20 (B) -40 No -50 Հեհետուհ -70 -3 -2 -1 0 Frequency (Hz) $\times 10^{6}$

ULTRA-STABLE LASER

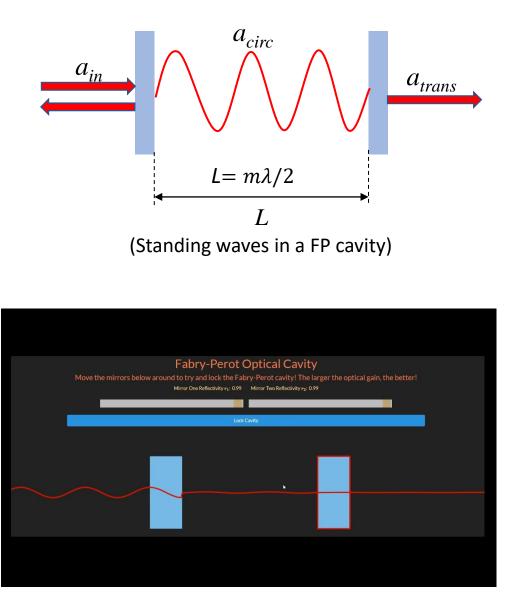

• Frequency noise can arise from:

Temporal fluctuations of the optical pump power/current Refractive index

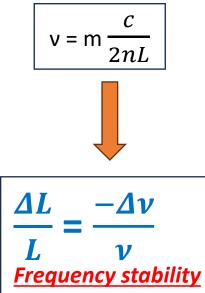

Length changes due to temp. fluctuations

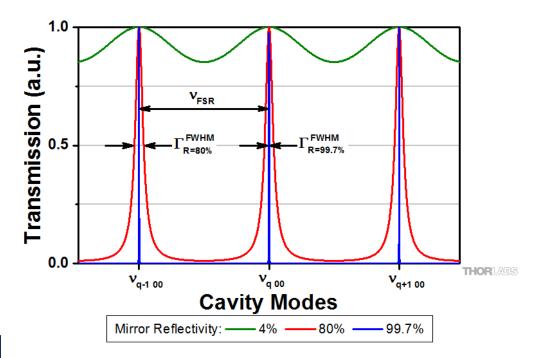

Mechanical vibrations

• General scheme of a frequency-stabilised laser:



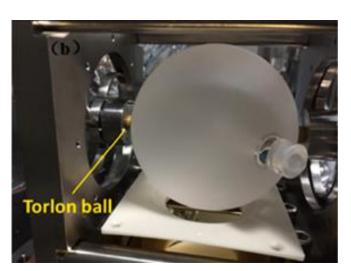
Linewidth broadening

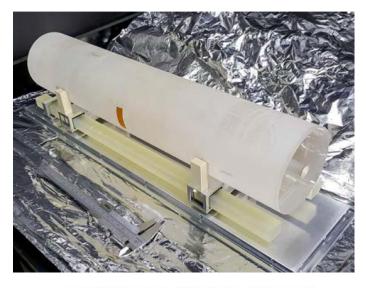


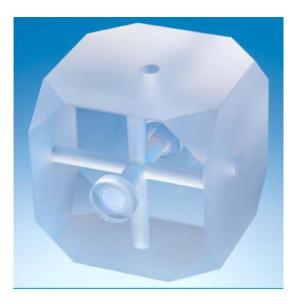


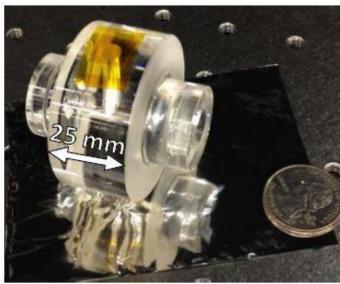
Fabry-Perot Cavity

Resonance condition:

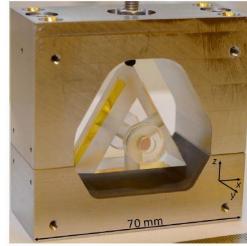


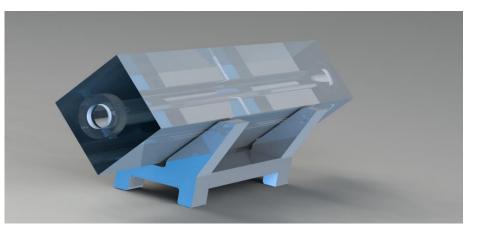



(Mode spectrum of FP cavity. Source: Thorlabs)

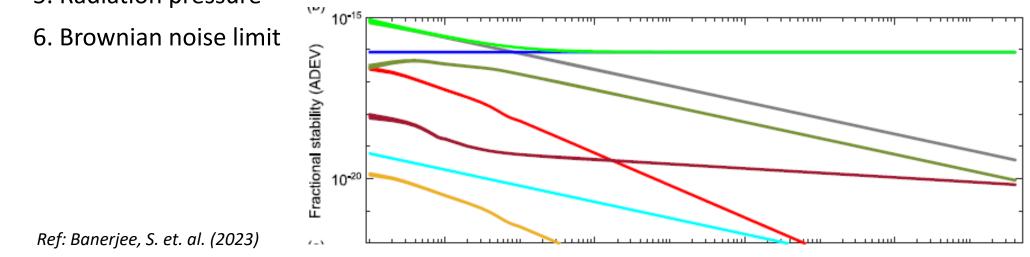

Key Parameters of FP cavity:
1. FSR =
$$\frac{c}{2nL}$$

2. Finesse, $\mathcal{F} = \frac{\pi\sqrt{R}}{(1-R)}$
3. Linewidth = $\frac{FSR}{\mathcal{F}}$


Fabry-Perot cavities....



Cavities come in different shapes and sizes....


Instabilities in a laser locked to a cavity:

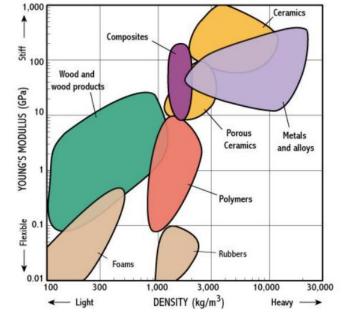
• Sources of noise:

- 1. Thermal fluctuations Grey
- 2. Mechanical vibrations Red
 - 3. Pressure fluctuations
- Olive green -4. Electronic hardware noise/PDH loop
 - 5. Radiation pressure Cyan
 - Blue

Cause fluctuations in cavity length

- LIMITATIONS!

Integration time τ (s)

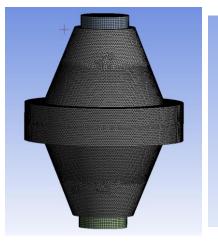

Thermal instability in a cavity

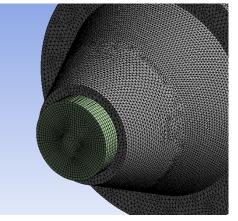
- Temperature fluctuations expand/contract materials
- Selection of material with minimum thermal expansion coefficient (High mechanical stiffness, low creep/ageing)

- CERAMICS!

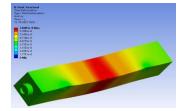
- Generally, longer cavities are better for thermal stabilization.
- Brownian noise of materials & limit!

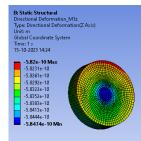
(Spacer, mirror substrate, mirror coatings)

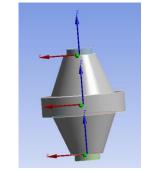



Λ

(Mech. Props in Physics & Design, Uni of Cambridge)


FINITE ELEMENT ANALYSIS (FEA)


- A computational method for approximate solutions
- Used for verifying designs, checking functionality, optimising components etc.
- 3 main types of analysis:
- 1. Static analysis 2. Dynamic analysis 3. Modal analysis

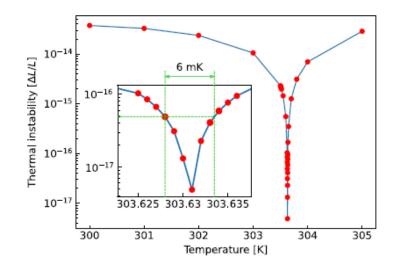


(Fig. Meshing on a conical cavity)

DISCRETIZATION/ Meshing

Define the problem

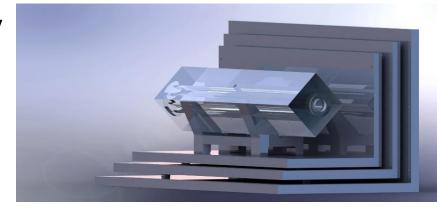
(eg. Finding stress/strain)

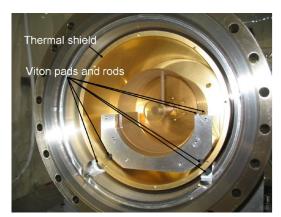

 $\begin{array}{l} \text{Define Element Stiffness} \\ \text{Matrices} \\ \left\{f\right\} = \left[k\right] \, \left\{u\right\} \end{array}$

Combining all element relations => Global Stiffness Matrix

Thermal instability in a cavity

Room-temperature cavities: Determine optimum temp for operation


Effective coefficient of thermal expansion $\times 10^{-9}$ /K, rate of change of cavity mode frequency with temperature ($\Delta v / \Delta T$) kHz/mK, and fractional frequency instability due to Brownian noise $\times 10^{-16}$ (at 1 Hz) for different combinations of spacer and mirror materials, respectively.


Spacer annuli Mirror	ULE	Fused Silica	Zerodur	Sapphire	Clearceram-Z
ULE	0.3	487	19.5	5362	19.5
	0.06	-94.23	-3.77	-1034.5	-3.77
	0.94	0.93	1.1	0.93	1.1
Fused Silica	12.9	500	32.07	5374	32.07
	-2.49	-96.75	-6.2	1036.8	-6.21
	0.45	0.43	0.73	0.43	0.74
Zerodur	0.8	487.93	20	5362	20
	-0.15	-94.41	-3.9	-1034.5	-3.87
	3.21	3.21	3.26	3.21	3.26
Sapphire	0.14	625.69	157.7	5500	157.7
	-26.7	-121.06	-30.52	-1061	-30.52
	0.21	0.15	0.61	0.14	0.62
Clearceram-Z	0.8	487.93	20	5362	20
	-0.15	-94.41	-3.9	-1034.5	-3.9
	3.2	3.23	3.29	3.23	3.29

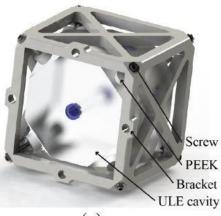
Sitall [58] exhibits the same properties as Zerodur.

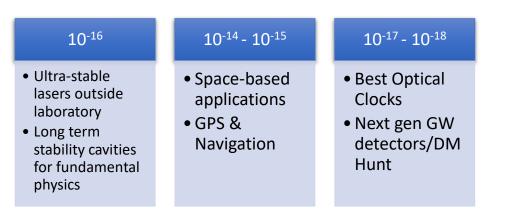
• Thermal shield design:

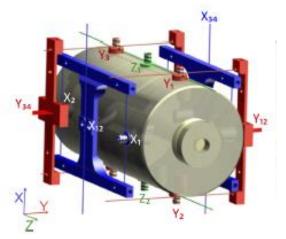
Low thermal conductivity Low emissivity

D. Alvarez et. Al (2018)

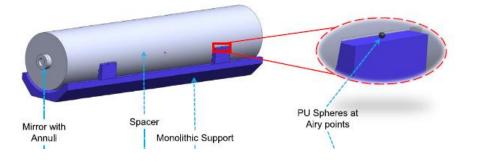

Thermal CTE minima Ref: Banerjee, S. et. al. (2023)

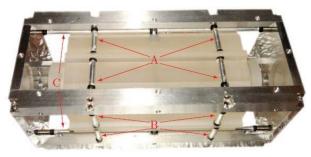

Transportable FP Cavity


A transportable cavity is characterised by its stable & robust mounting, which allows it to maintain its integrity during the course of transport, and achieve the same stability before and after transport.

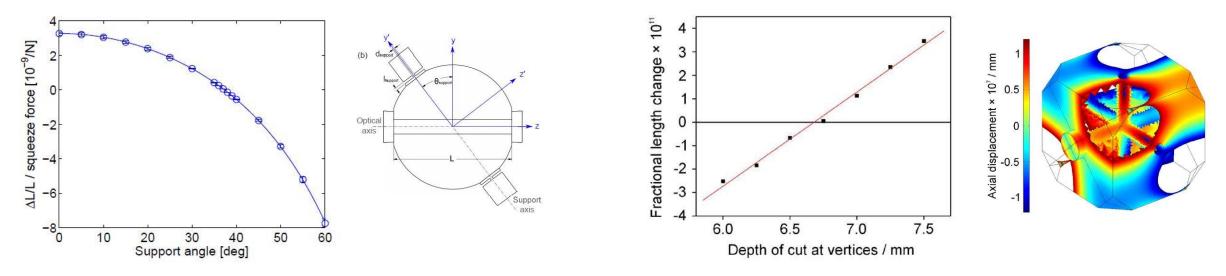

<u>Requirements</u> (Qualitatively):

- 1. The cavity needs to be compact, with robust mounting
- 2. Motion constrained in all directions (translational and rotational)
- 3. Sustain Acceleration & Vibrations during transport.
- 4. Minimum deformation due to support/compressive forces.

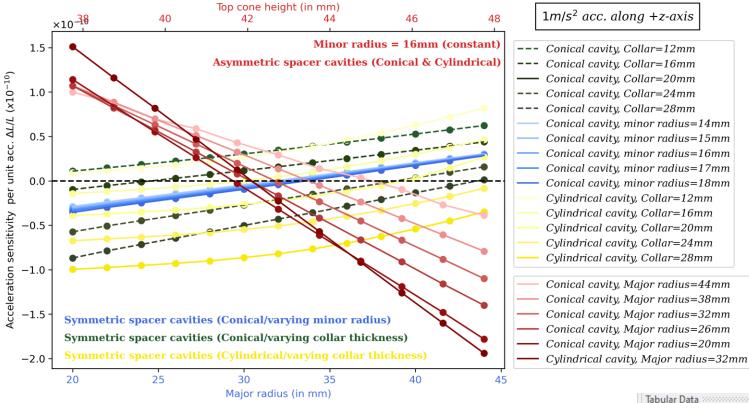

Cubical cavity (UCAS, China)

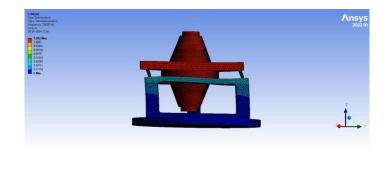

(a)

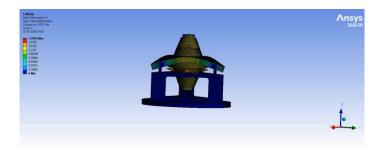
Cylindrical cavity with mounting (PTB, Germany)

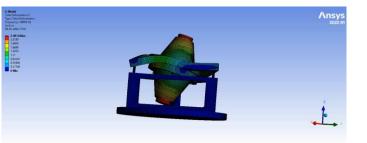

Vibrational stability:

- Seismic vibrations from ground travel through components causing length fluctuations dynamic change (Random vibrations)
- Soft mounting vs Rigid mounting


• Zero-crossing in deformation due to mounting forces:


Vibrational stability:


Dimension optimisation


Acc. Stability Zero-crossing for Conical & Cylindrical spacers (with 3-point support)

Increasing natural resonance modes

 Mode
 ✓ Frequency [Hz]

 1.
 349.1

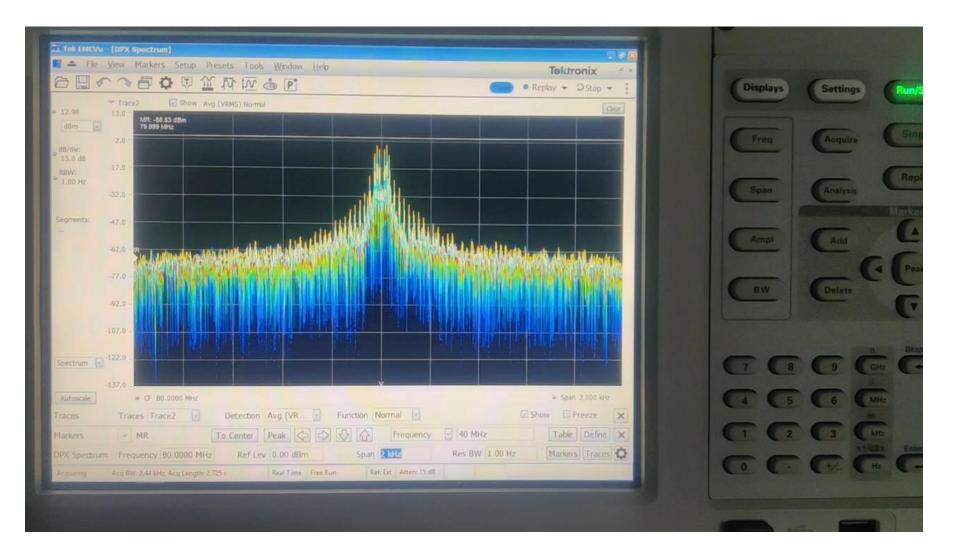
 2.
 349.35

 3.
 694.27

777.28

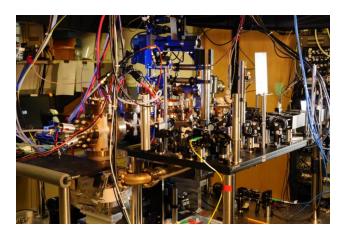
1204.5 1204.6

2021.2

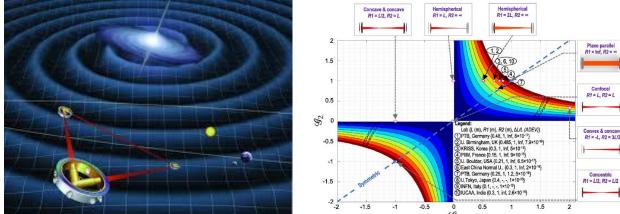

3 3. 4 4.

5 5

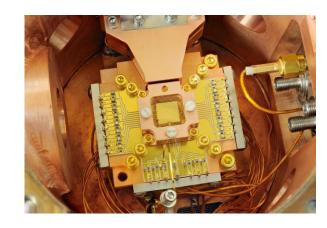
6 6


7 7.

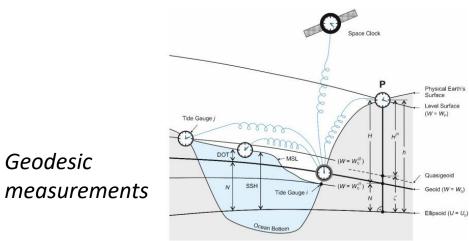
Locking laser to cavity -----> Ultra-stable Laser!


Credits: Dr. Stanley Johnson Post Doctoral Fellow @ PQM Lab, IUCAA

"So what?"..... What can be achieved once you obtain an Ultrastable Laser?



Geodesic


Optical clocks

Next-gen GW Detectors – LISA & NUC based interferometers

Trapped ion qubits

THANK YOU....

Safe to say we have traversed from Lagrangians to LASERS !.....