

Can ML Accelerate Particle Simulations?

Chitrakshee Yede

Mentor: Prof. Sourabh Dube, Arnab Laha

Lagrangian To Lasers(L2L)

April 11th, 2024

Simulations in HEP

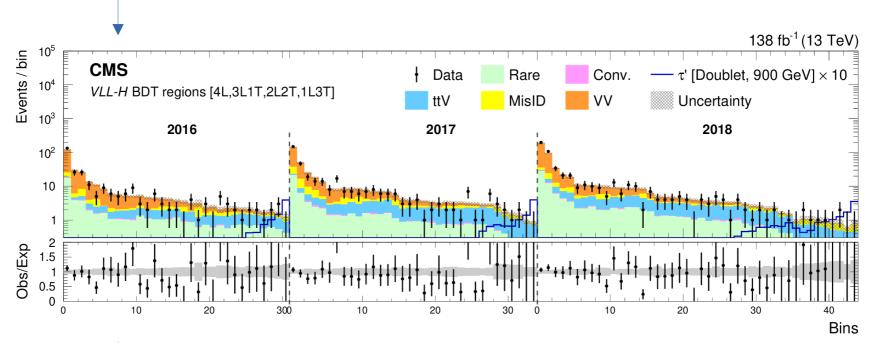
Simulation is crucial in HEP!

- Particle Interaction Modeling
- Detector performance and design
- Event Generation
- Background Estimation
- Signal and background discrimination

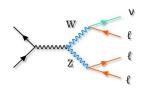
Inclusive nonresonant multilepton probes of new phenomena at \sqrt{s} = 13 TeV Phys. Rev. D 105 (2022) 112007)

Used BDTs to discriminate between the signal and the background

BDTs (Boosted Decision Trees) are trained using large simulation samples



The Problem



Lets look at some numbers!!

$N_{ m generated}$	$N_{training}$
2016 11.9M	124k
2017 10.8M	132k
2018 22M	233k

N_{generated} - total number of WZ events generated, Madgraph + Pythia + Geant4 (CMSSW) N_{training} - number of WZ events used to train BDTs

~ 1% of the generated events used for training

Event selection optimizes signal-to-background ratio, excluding a significant portion of background events, particularly when training a signal vs. background classifier.

Higher statistics leads to better training performance!

How can we achieve that?

Can generate more events! (Time-Consuming, computationally intensive): (

or

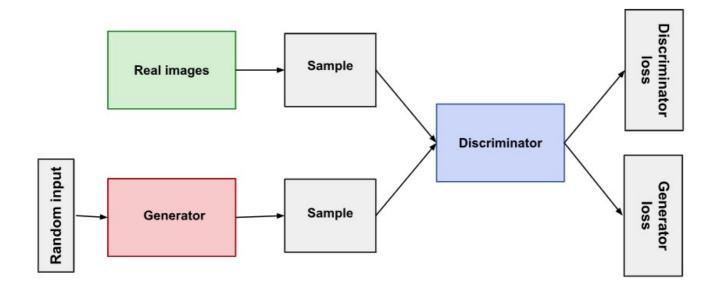
Can generate partial events (only the required variables)? :)

Generative Models

Generative Adversarial Networks (GANs)

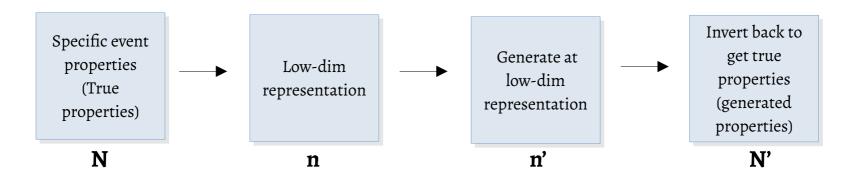
- → Two sub-models Generator and Discriminator that competes with each other!
- → Generator : Generates pseudo data
- → Discriminator: Distinguishes between real and pseudo data
- → This iteration continues until generator succeeds to fool the discriminator

Generates a distribution by sampling from latent space and learning the correlation of features space

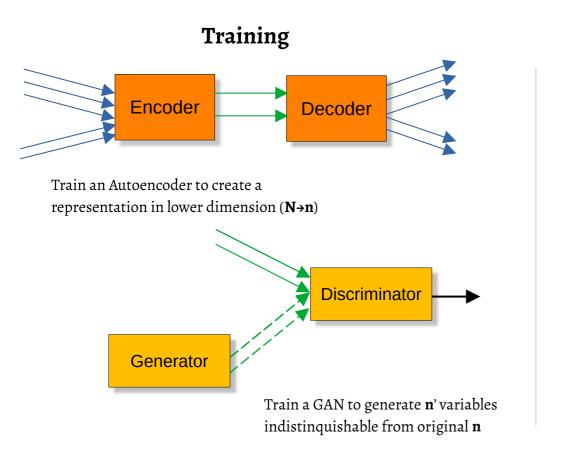


Complication: Slower and limited performance as number of features increases

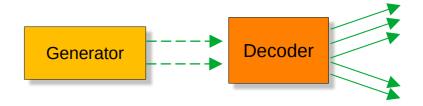
The Idea



Dimensionality Reduced Generative Adversarial Network



Implementation



The Generator generate **n'** variables for as many events as needed.

The decoder decodes \mathbf{n}' variables back to original higher dimension \mathbf{N}' to be used in analysis.

The idea is that generated N' is comparable to original N.

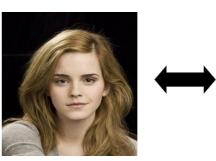
Dimensionality Reduction - Autoencoders

Suppose we obtain a lower dimension representation of the data

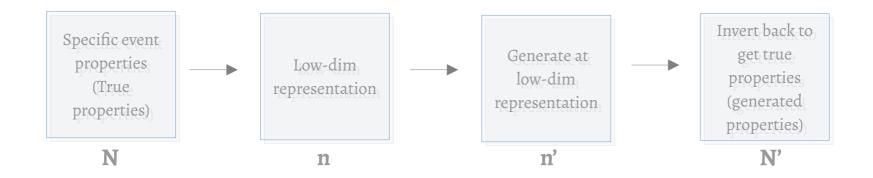
Generating at lower dimension is easier!

Goals:

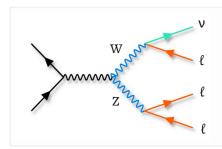
- Should be faster
- To design a user-friendly pipeline
- Should be operable on personal workstations





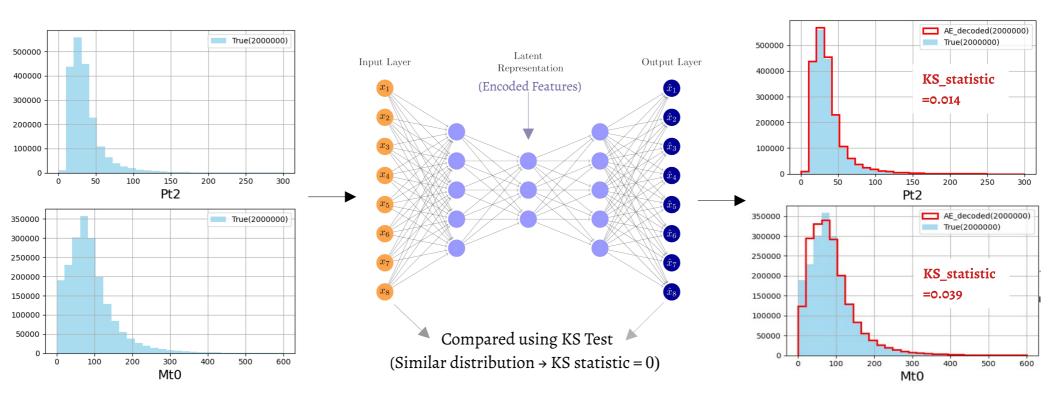


Autoencoders



WZ process is a irreducible background for multilepton searches

Selected event properties: Particle momenta, Missing pT, Transverse Masses, and Angular information, HT, ST, Dijet mass



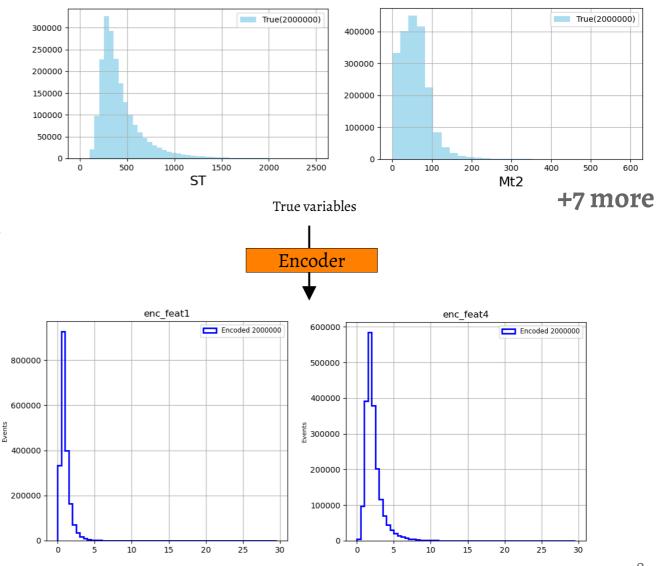
- Employed the Kolmogorov-Smirnov (KS) test to assess the match between true and reconstructed distributions.
- Utilized the average KS statistic for all variables as a quantitative metric.

Encoding

- Trained the autoencoder (Encoder + Decoder model)
- Use the encoder model to get the lower dimension representation of the true variables.

AE Configurations

- Input Variables StandardScalar to normalize
- NN architecture ~ 20k
- Activation function- LeakyReLU
- Epochs 200
- Batch_Size-2000
- Loss Function MSE
- Trained on 500k events
- Traning Time ~1.5 hours

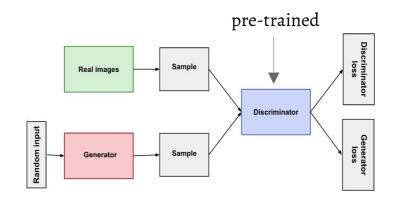


Lower dimension representation

+3 more

Training a GAN

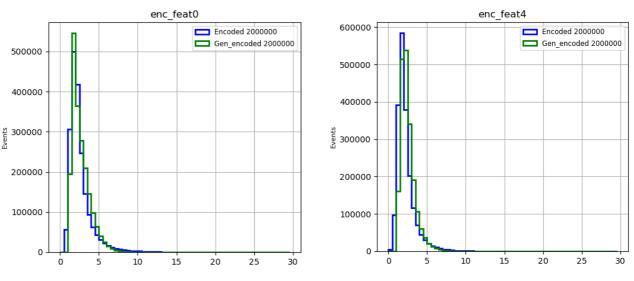
- Trained the GAN network using low-dim features.
- Used a pre-trained discriminator
- Generate the features using trained Generator.



Configurations

- Input 5 low-dim encoded features
- NN architecture complexity ~ 10k (D and G)
- Activation function- LeakyReLU
- Latent dimension -5
- Epochs 20k
- Batch Size-5k
- Tranied on 2M events
- Time Taken to train ~ 6 hours

GAN Output



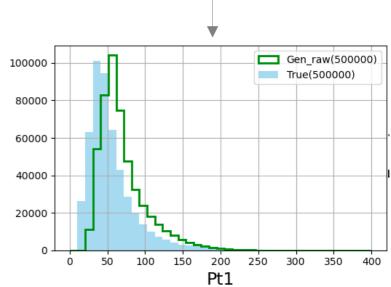
Generated feature(Green) Vs. Encoded feature (Blue)

+3 more

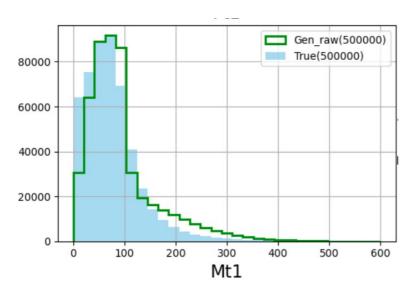
Decoding

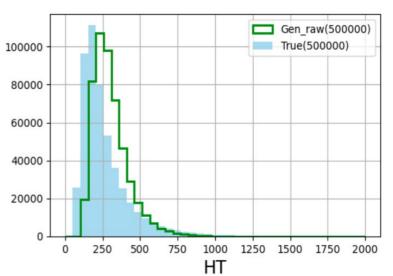
• Using decoder model from previously trained autoencoder, decode to get high dimension generated variables.

- Scaled them back using the inverse scalar transform.
- Compared with the original variables.
- Currently, refining the models to enhance performance and improving these results.
- Aiming to validate the relevance and effectiveness of generated variables in preserving essential physics information.



Tested on Independent 500k events





+6 more

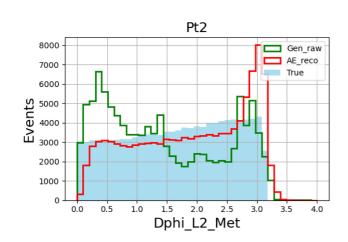
Explored NN architecture and Hyperparameter Tuning

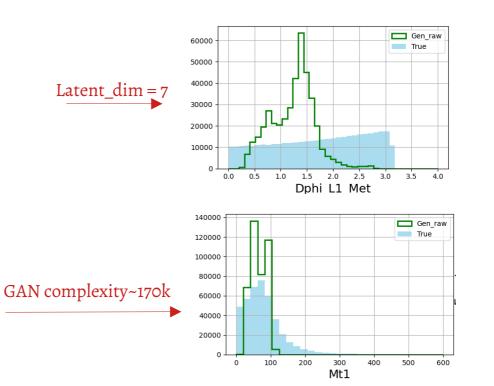
For both AE and GAN architectures, Experimented with:

- NN Complexity
- Latent dimensions in GAN
- GAN with and without pre-trained discriminator
- Varying epochs, batch_size
- LeakyReLU instead of ReLU

AE Model (Encoding)	Complexity (trainable parameters)	KS test Score (mean)
7 to 2	~157k	0.074
7 to 4	~40k	0.048
7 to 4	~157k	0.026
10 to 5	~6k	0.075
10 to 5	~40k	0.063
10 to 5	~160k	0.054
9 to 5	~160k	0.027

Angular Variable Reconstruction





Thanks!

