Measurement of Coherence Properties of Light

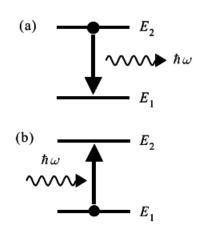
S.V.U. Vedhanth

 In physics wherever we studied about light, we assumed it to be monochromatic.

```
\mathbf{E} = \mathbf{E}_{\mathbf{o}} \exp(-\mathbf{i}\boldsymbol{\omega}\mathbf{t} + \boldsymbol{\varphi})
```

where E_o is the amplitude and the ω is the frequency and φ is the phase

4.1 Einstein coefficients



The quantum theory of radiation assumes that light is emitted or absorbed whenever an atom makes a jump between two quantum states. These two processes are illustrated in Fig. 4.1. Absorption occurs when the atom jumps to a higher level, while emission corresponds to the process in which a photon is emitted as the atom drops down to a lower level. Conservation of energy requires that the angular frequency ω of the photon satisfies:

$$\hbar\omega = E_2 - E_1,\tag{4.1}$$

where E_2 is the energy of the upper level and E_1 is the energy of the lower level. In Section 4.2 we explain how quantum mechanics enables us to calculate the emission and absorption rates. At this stage we restrict ourselves to a phenomenological analysis based on the **Einstein coefficients** for the transition.

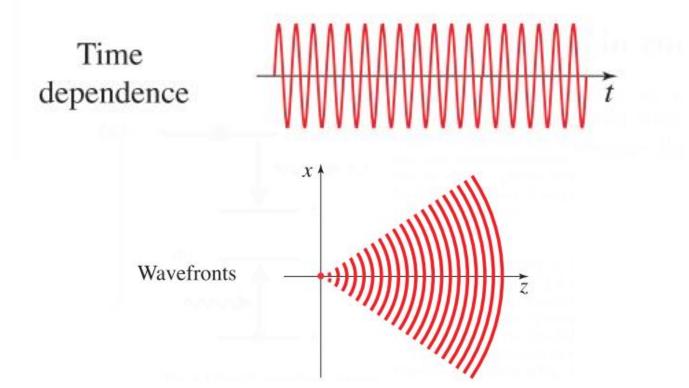
The radiative process by which an electron in an upper level drops to a lower level as shown in Fig. 4.1(a) is called **spontaneous emission**. This is because the atoms in the excited state have a natural (i.e. spontaneous) tendency to de-excite and lose their excess energy. Each type of atom

Fig. 4.1 Optical transitions between two states in an atom: (a) spontaneous emission, (b) absorption.

• In physics wherever we studied about light, we assumed it to be monochromatic.

```
\mathbf{E} = \mathbf{E}_{\mathbf{0}} \exp(-\mathbf{i}\boldsymbol{\omega}\mathbf{t} + \boldsymbol{\varphi})
```

where E_o is the amplitude and the ω is the frequency and φ is the phase



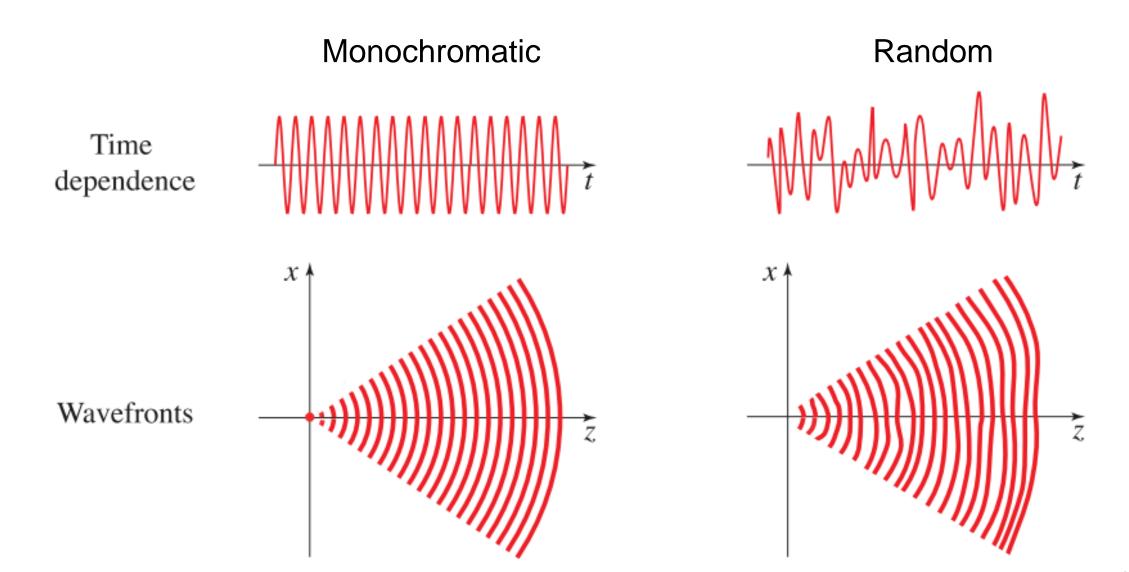
But can we have a monochromatic source of light? It turns out we can't...!

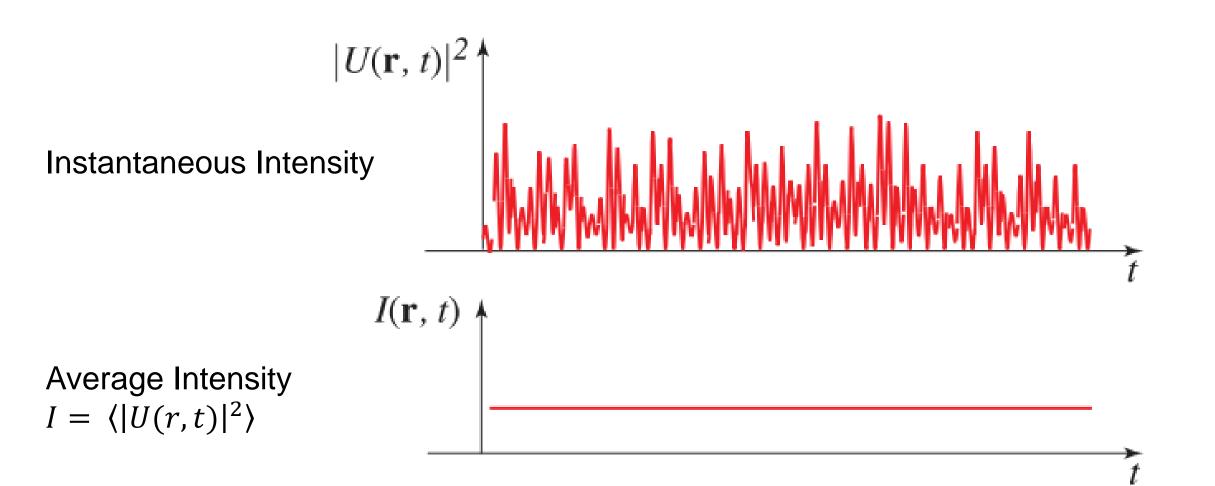
• From time dependent perturbation theory, we get an uncertainty relation,

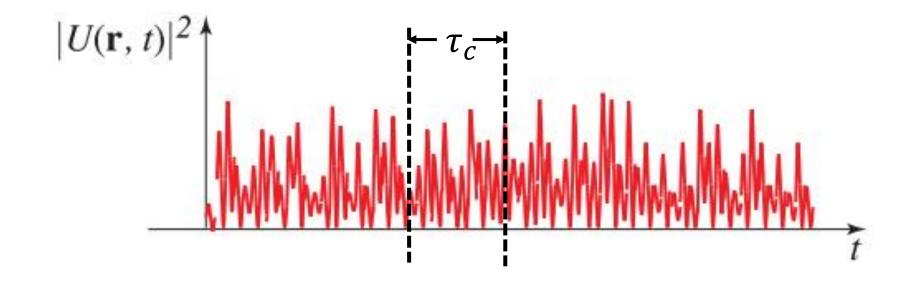
 $\Delta E.\,\Delta t ~\approx h/2\pi$

- As a result, for $\Delta E = 0$ we should have $\Delta t \rightarrow \infty$. It means it may take infinite amount of time for transition.
- So in nature we always have a finite spread in the energy/frequency.

Source	$\Delta \nu_c$ (Hz)
Filtered sunlight ($\lambda_o = 0.4$ –0.8 μ m)	3.74×10^{14}
Light-emitting diode ($\lambda_o = 1 \ \mu m, \Delta \lambda_o = 50 \ nm$)	$1.5 imes10^{13}$
Low-pressure sodium lamp	$5 imes 10^{11}$
Multimode He–Ne laser ($\lambda_o = 633 \text{ nm}$)	$1.5 imes 10^9$
Single-mode He–Ne laser ($\lambda_o = 633 \text{ nm}$)	$1 imes 10^6$







 τ_c - Longitudinal Coherence Time, so Longitudinal Coherence Length L_c = **c** τ_c where **c** is the speed of light

• To get coherence time we measure the auto-correlation function of the electric field.

$$G(\tau) = \langle E(t)E^*(t+\tau) \rangle$$

• The normalised auto-correlation of the electric field is called the **coherence function**.

$$g^{(1)}(\tau) = \frac{\langle E(t)E^*(t+\tau)\rangle}{\langle E(t)E^*(t)\rangle}$$

• From this temporal coherence function one can quantitatively calculate the coherence time of the field.

• The same can be defined along with the spatial separation Δr .

$$g^{(1)}(\Delta r, \tau) = \frac{\langle E(r_1, t) E^*(r_2, t + \tau) \rangle}{\langle E(r_1, t) E^*(r_2, t) \rangle} \qquad \Delta r = |r_1 - r_2|$$

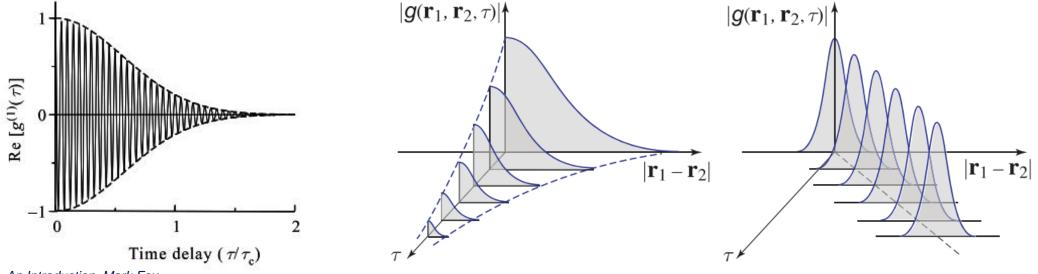
• The temporal delay τ is along the longitudinal direction and the spatial separation Δr is along the transverse direction.

• $g^{(1)}(\Delta r = 0, \tau)$ gives the temporal coherence function and $g^{(1)}(\Delta r, \tau = 0)$ gives the spatial coherence function.

• The same can be defined along with the spatial separation Δr .

$$g^{(1)}(\Delta r, \tau) = \frac{\langle E(r_1, t) E^*(r_2, t + \tau) \rangle}{\langle E(r_1, t) E^*(r_2, t) \rangle} \qquad \Delta r = |r_1 - r_2|$$

• This function is called the first-order coherence function and $|g^{(1)}(\Delta r, \tau)|$ is called the degree of first-order coherence function.



Quantum Optics – An Introduction, Mark Fox Fundamentals of Photonics, Saleh and Teich

• If we consider a quasi monochromatic light with central frequency ω_o which changes with time by $\varphi(t)$,

$$E = E_0 e^{-i\omega_0 t} e^{i\varphi(t)}$$

• Then
$$g^{(1)}(\tau) = e^{-i\omega_0 t} \langle e^{i[\varphi(t+\tau)-\varphi(t)]} \rangle$$
 and so $\mathbf{0} \le |g^{(1)}(\tau)| \le \mathbf{1}$

Description of light	Spectral width	Coherence	Coherence time	$ g^{(1)}(au) $
Perfectly monochromatic	0	Perfect	Infinite	1
Chaotic	$\Delta \omega$	Partial	$\sim 1/\Delta \omega$	$1 > g^{(1)}(\tau) > 0$
Incoherent	Effectively infinite	None	Effectively zero	0

• If we consider a quasi monochromatic light with central frequency ω_o which changes with time by $\varphi(t)$,

$$E = E_0 e^{-i\omega_0 t} e^{i\varphi(t)}$$

• Then
$$g^{(1)}(\tau) = e^{-i\omega_0 t} \langle e^{i[\varphi(t+\tau)-\varphi(t)]} \rangle$$
 and so $\mathbf{0} \le |\mathbf{g}^{(1)}(\tau)| \le \mathbf{1}$

• Depending on the underlying spectral broadening mechanism the functional form of $g^{(1)}(\tau)$ varies.

• For Natural broadening
$$g^{(1)}(\tau) = e^{-i\omega_0 t} \exp\left(\frac{-|\tau|}{\tau_c}\right)$$
 where $\tau_c = 1/\Delta\omega$

For Doppler broadening $g^{(1)}(\tau) = e^{-i\omega_o t} \exp\left(\frac{-\pi}{2}\left(\frac{\tau}{\tau_c}\right)^2\right)$ where $\tau_c = \frac{8\pi ln 2^{1/2}}{\Delta \omega}$

• According to Weiner Khintchine Theorem, the spectral distribution is the Fourier transform of the first-order temporal coherence function.

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g^{(1)}(\tau) \exp(i\omega\tau) d\tau$$

Source	$\Delta \nu_c$ (Hz)	$\tau_c = 1/\Delta\nu_c$	$l_c = c_o \tau_c$
Filtered sunlight ($\lambda_o = 0.4$ –0.8 μ m)	3.74×10^{14}	2.67 fs	800 nm
Light-emitting diode ($\lambda_o = 1 \ \mu m, \Delta \lambda_o = 50 \ nm$)	$1.5 imes10^{13}$	67 fs	$20~\mu{ m m}$
Low-pressure sodium lamp	$5 imes 10^{11}$	$2 ext{ ps}$	$600~\mu{ m m}$
Multimode He–Ne laser ($\lambda_o = 633 \text{ nm}$)	$1.5 imes 10^9$	0.67 ns	$20~{ m cm}$
Single-mode He–Ne laser ($\lambda_o = 633 \text{ nm}$)	1×10^{6}	$1 \mu s$	300 m

- The degree of coherence can be measured from the **interference** experiments.
- If we interfere light beams with E(t) and $E(t + \tau)$ then,

 $I = \langle |E(t)|^2 \rangle + \langle |E(t+\tau)|^2 \rangle + \langle E(t)E^*(t+\tau) \rangle + \langle E^*(t)E(t+\tau) \rangle$

 $I = I_1 + I_2 + 2Re(\langle E(t)E^*(t+\tau) \rangle)$

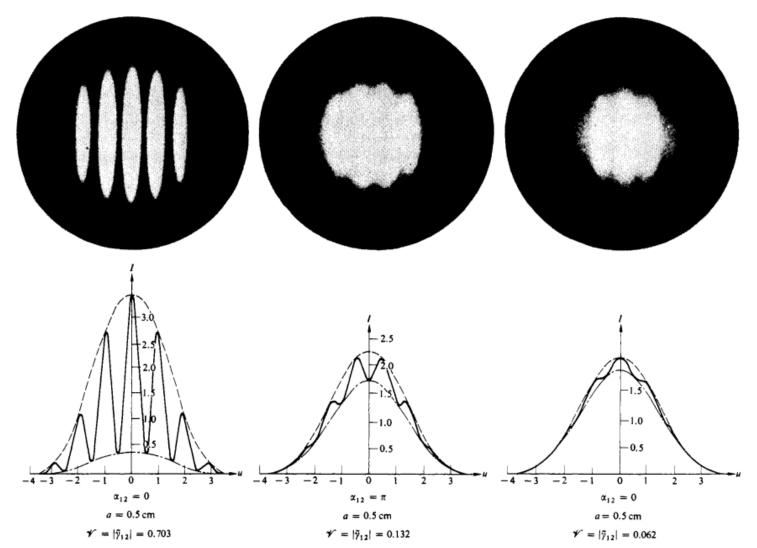
$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} Re(g^{(1)}(\tau))$$

 $I = I_1 + I_2 + 2\sqrt{I_1I_2} |g^{(1)}(\tau)| cos\varphi$

• This has the form $I = I_1 + I_2 + 2\gamma \cos\varphi$ where γ is called **visibility**.

Visibility
$$= \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1I_2}}{I_1 + I_2} |g^{(1)}(\tau)|$$

From measuring the visibility of the fringe one can calculate the degree of first order coherence.

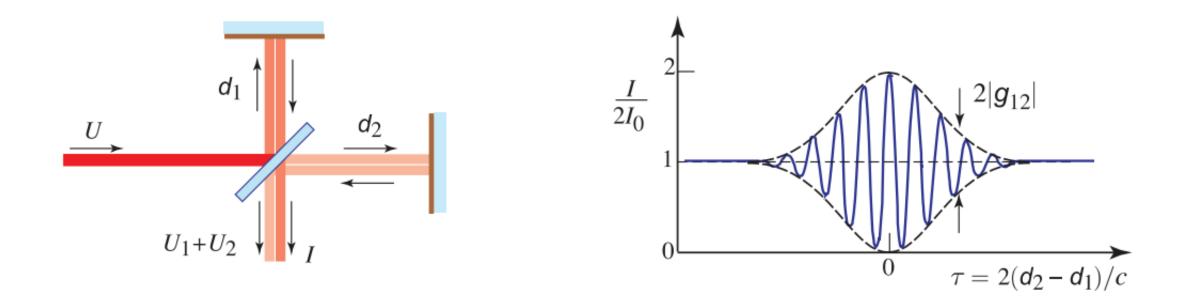


Visibility
$$= \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1I_2}}{I_1 + I_2} |g^{(1)}(\tau)|$$

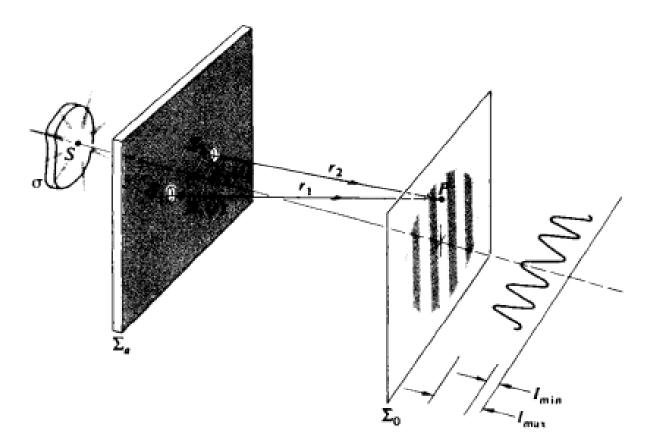
From measuring the visibility of the fringe one can calculate the degree of first order coherence.

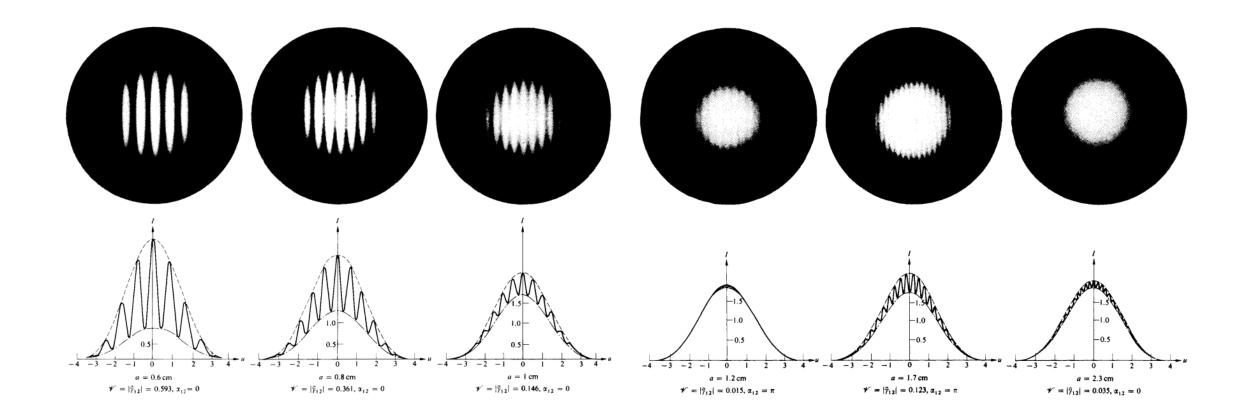
Now what interferometer should we use?

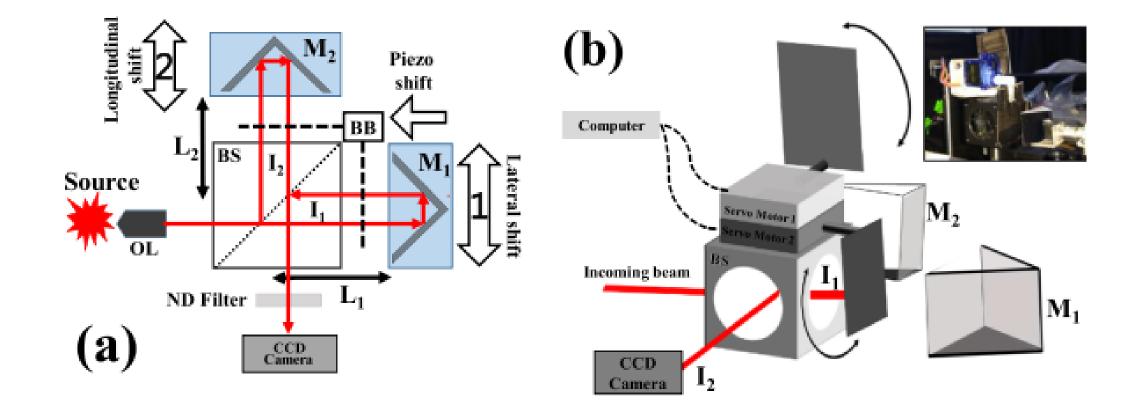
• For measuring temporal coherence we use Michelson Interferometer

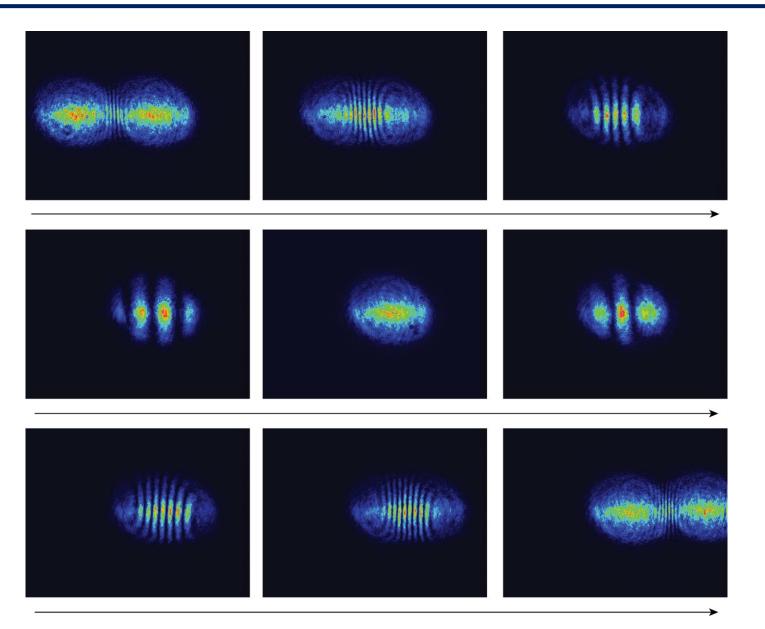


• For measuring spatial coherence we use **Young's double slit experiment**

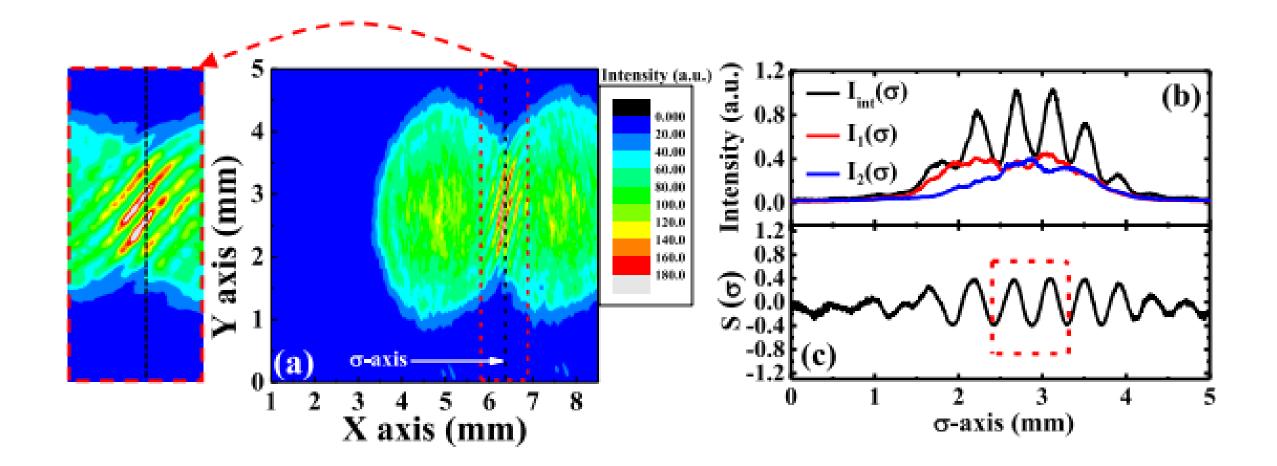




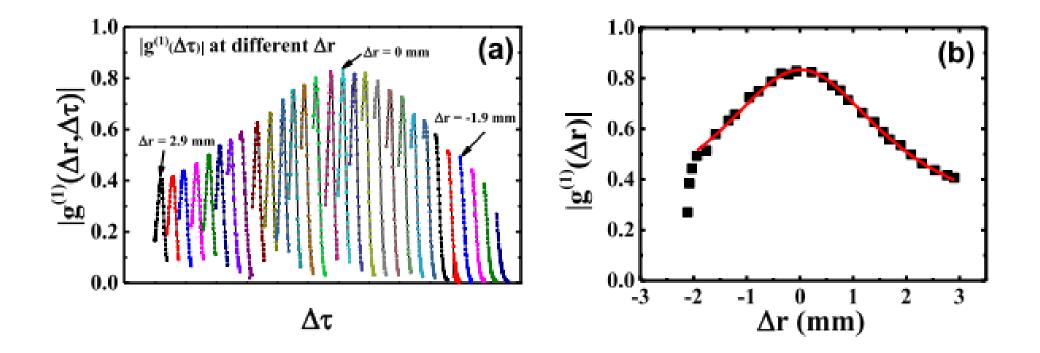




Data from Dr. Shouvik Datta Lab

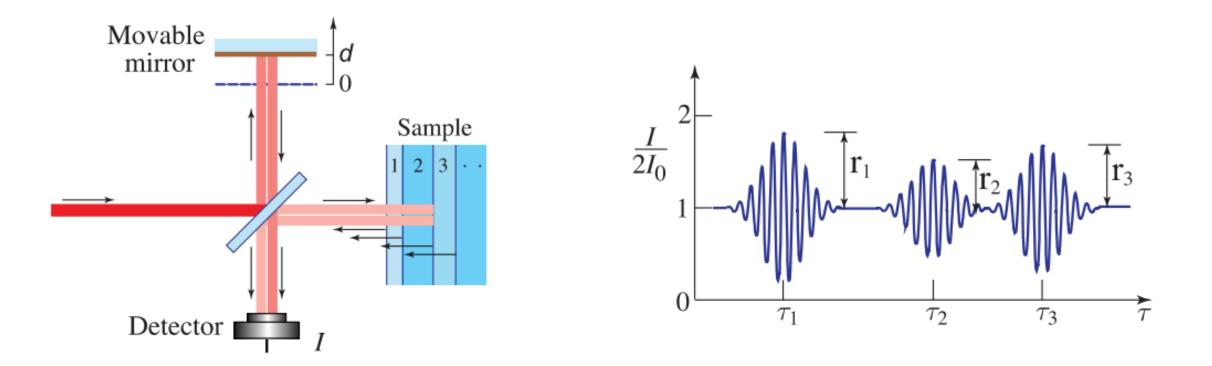


• Temporal filtering

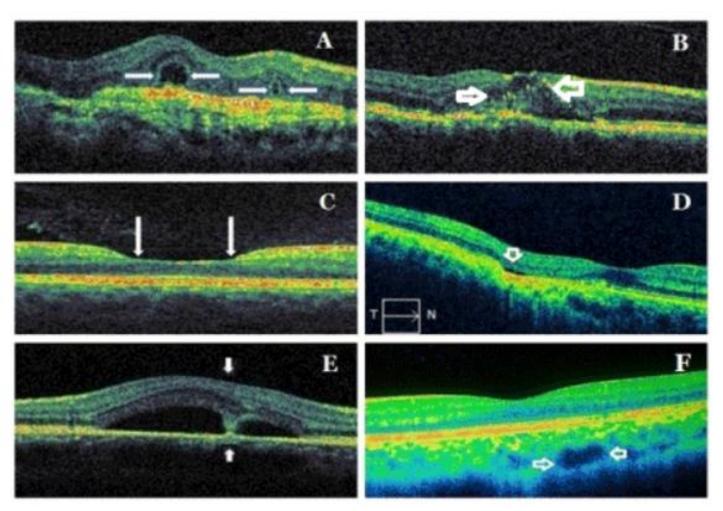


Let us see some places where these measurments are used

Use in Optical Coherence Tomography (OCT)

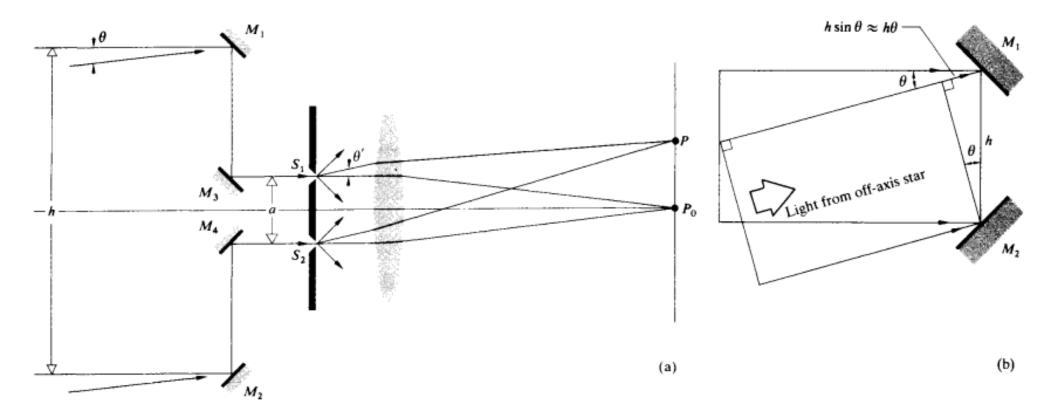


• OCT has main application in **Ophthalmology** 10.15761/NFO.1000130

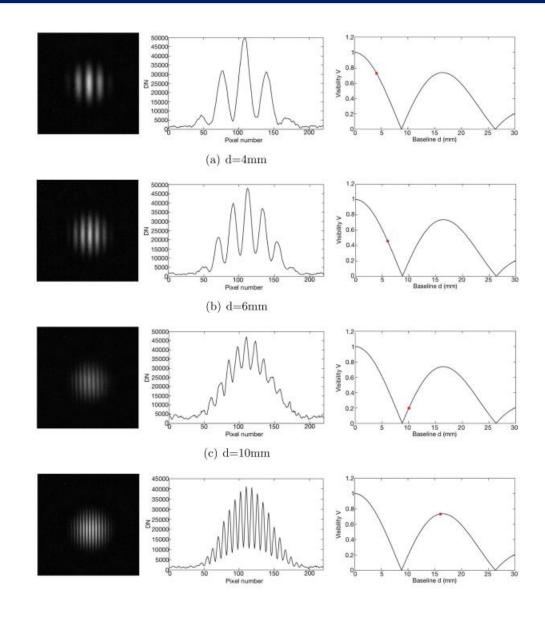


Turgut B, Demir T (2016) The new landmarks, findings and signs in optical coherence tomography. New Front Ophthalmol 2

 It also used in astronomy to measure angular radius of the planets by Michelson stellar interferometry



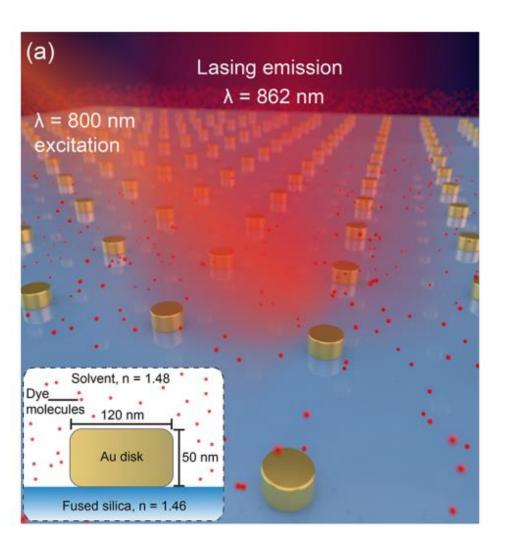
 It also used in astronomy to measure angular radius of the planets by Michelson stellar interferometry



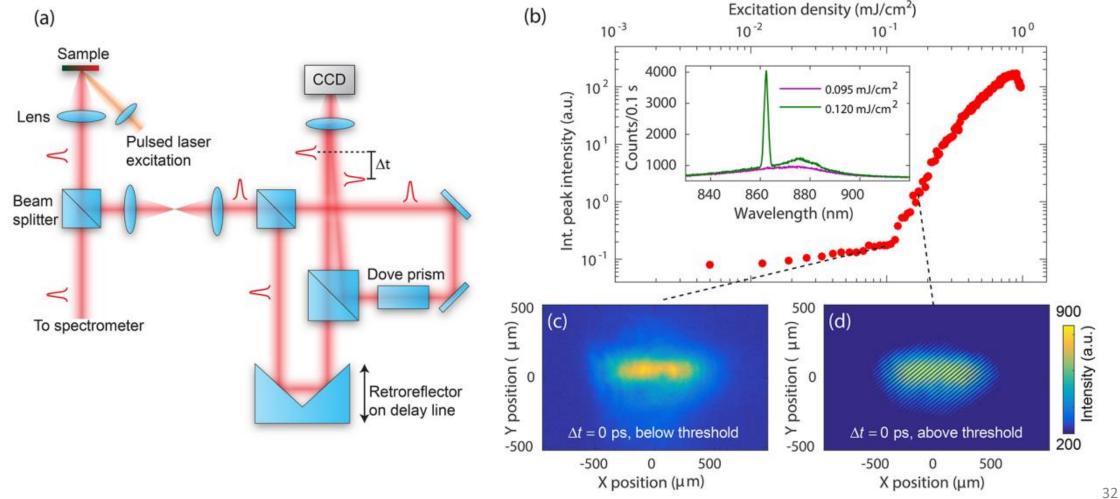
• For understanding the process of **lasing** in different systems

Plasmonic systems

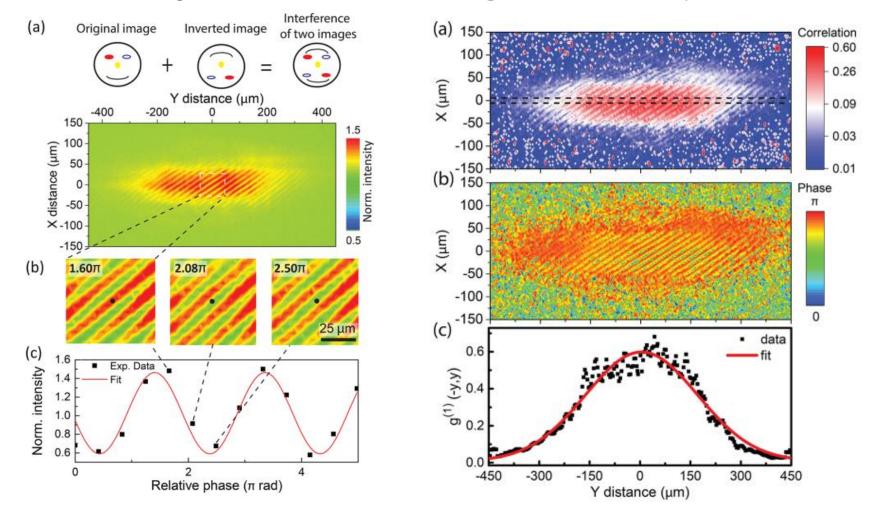
Thang B. Hoang, Gleb M. Akselrod, Ankun Yang, Teri W. Odom, and Maiken H. Mikkelsen Nano Letters **2017** 17 (11), 6690-6695

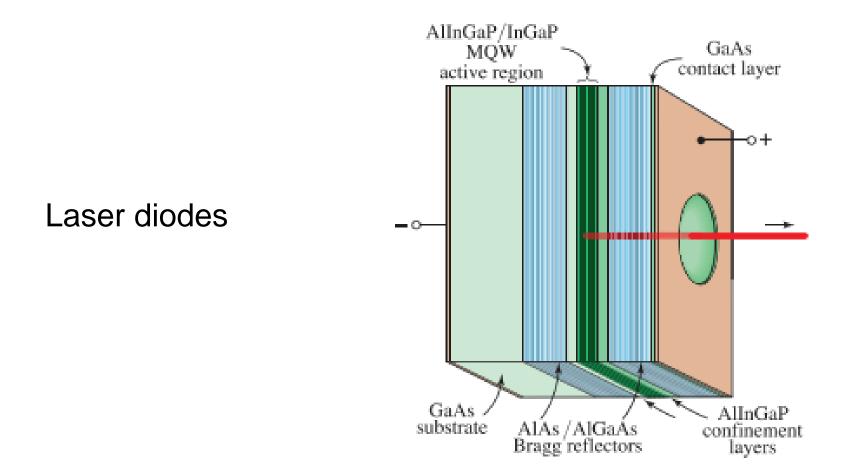


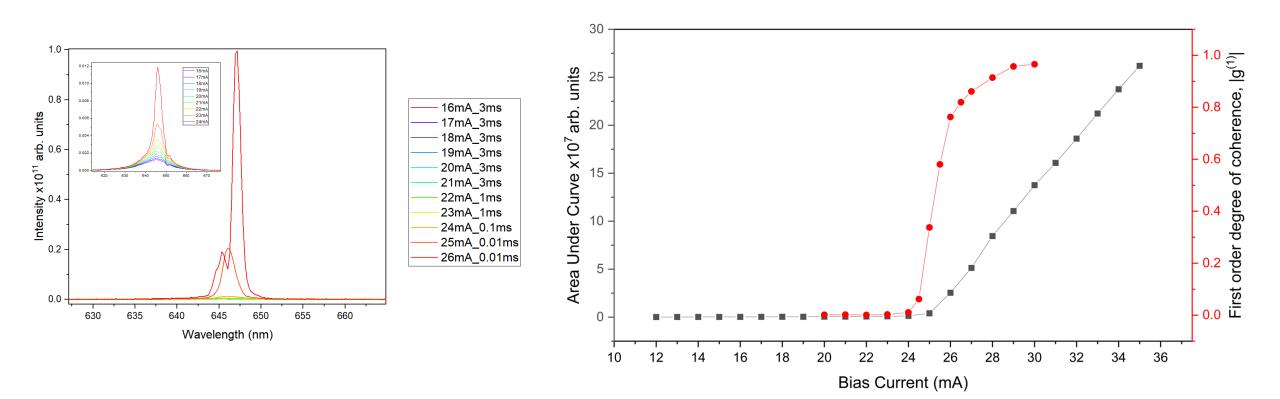
• For understanding the process of lasing in different systems

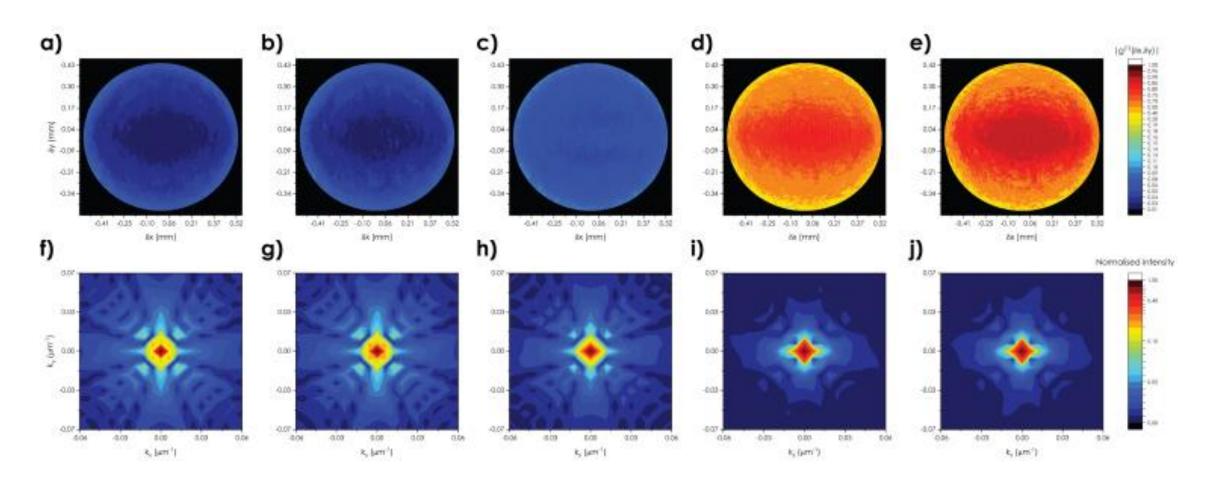


Thang B. Hoang, Gleb M. Akselrod, Ankun Yang, Teri W. Odom, and Maiken H. Mikkelsen Nano Letters 2017 17 (11), 6690-6695

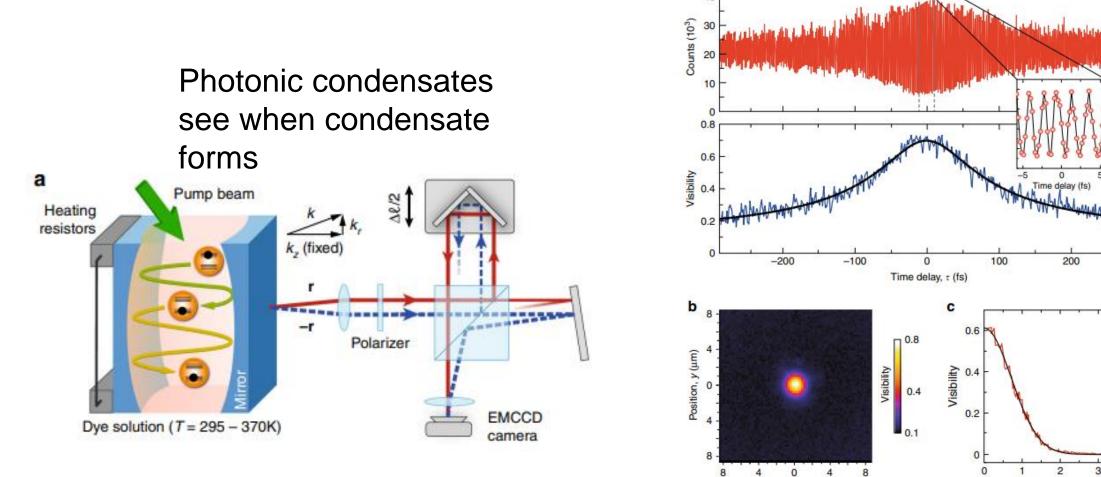








• For studying the Bose Einstein Condensates (BEC)



а

40

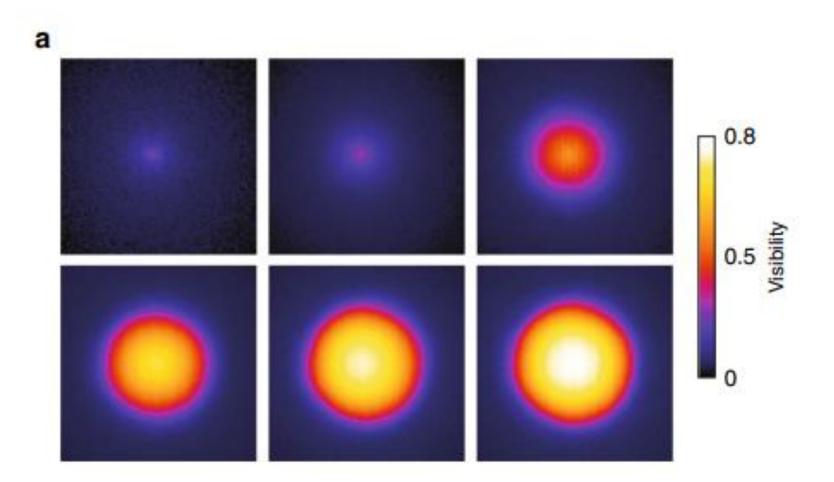
Position, x (µm)

Radial distance, r (um)

37

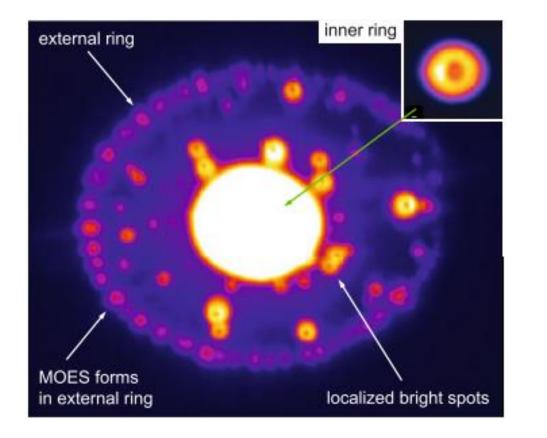
Damm, T., Dung, D., Vewinger, F. et al. First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas. Nat Commun 8, 158 (2017)

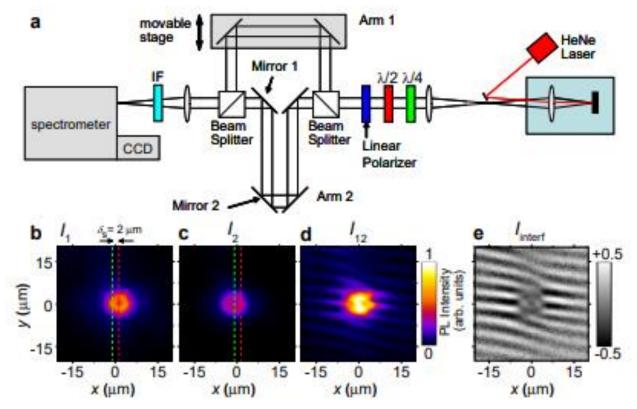
• For studying the Bose Einstein Condensates (BEC)



• For studying the Bose Einstein Condensates (BEC)

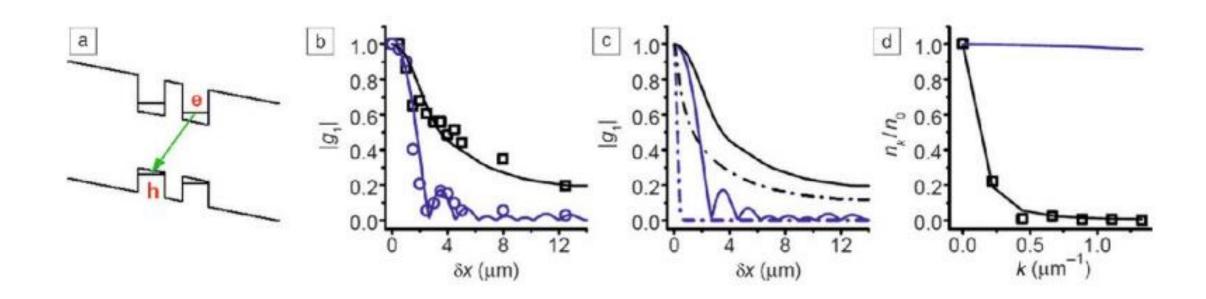
Condensates of Indirect Excitons



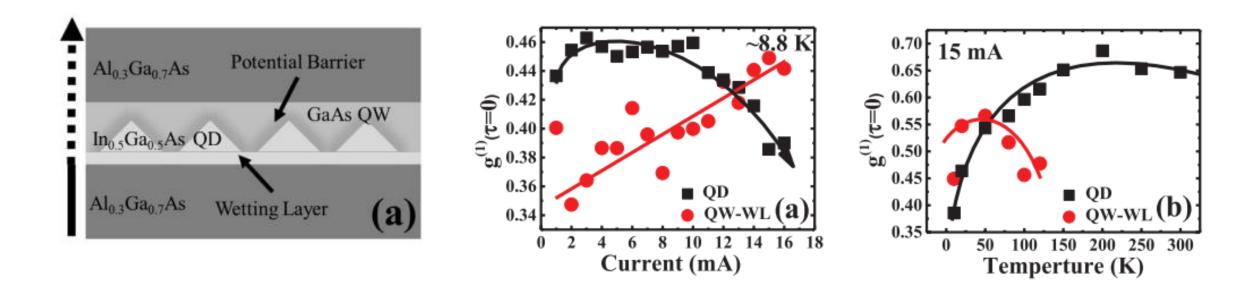


High, A., Leonard, J., Hammack, A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012)

• For studying the Bose Einstein Condensates (BEC)



• For providing some indirect evidences for processes in excitonic systems



Can we have correlations in Intensity?

 So we do second order coherence measurements, the second order coherence function is given as

$$g^{(2)}(\tau) = \frac{\langle E^*(t)E(t+\tau)E^*(t+\tau)E(t)\rangle}{\langle E(t)E^*(t)\rangle\langle E(t+\tau)E^*(t+\tau)\rangle} = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle\langle I(t+\tau)\rangle}$$

$$g^{(2)}(\tau) = \frac{\langle n(t)n'(t+\tau)\rangle}{\langle n(t)\rangle\langle n'(t+\tau)\rangle}$$

- We will discuss the photon picture.
- The photon flux, $\varphi = \frac{IA}{\hbar\omega}$ and the average count rate $R = \eta \frac{IA}{\hbar\omega}$ where η is the quantum efficiency
- There is a **dead time of 1** μ **s (approx.) for photodetectors** which limits the photon count measurements.
- For intensity correlation measurements we need low intensity light i.e., photon picture

2nd Order

$(E) = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$					
Light source	Property	Comment			
All classical light	$g^{(2)}(0) \ge 1$ $g^{(2)}(0) \ge g^{(2)}(\tau)$	$g^{(2)}(0) = 1$ when $I(t) = \text{constant}$			
Perfectly coherent light Gaussian chaotic light Lorentzian chaotic light	$g^{(2)}(\tau) = 1$ $g^{(2)}(\tau) = 1 + \exp\left[-\pi(\tau/\tau_c)^2\right]$ $g^{(2)}(\tau) = 1 + \exp\left(-2 \tau /\tau_0\right)$	Applies for all τ $\tau_{\rm c}$ = coherence time τ_0 = lifetime			

2nd Order

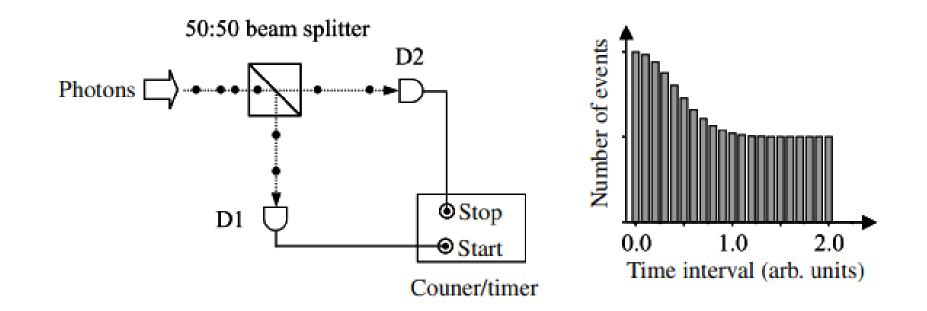
	Photon stream		Antibunched	•	
Classical description		$g^{(2)}(0)$			
Chaotic	Bunched	>1	• • • • • • • • • • • • • • • • • • •		
Coherent	Random	1			
None	Antibunched	<1			
			•••• •••		
			Bunched		

 Now if we calculate the probability P(n) of finding n photons in within a beam of length L containing n segments then we get,

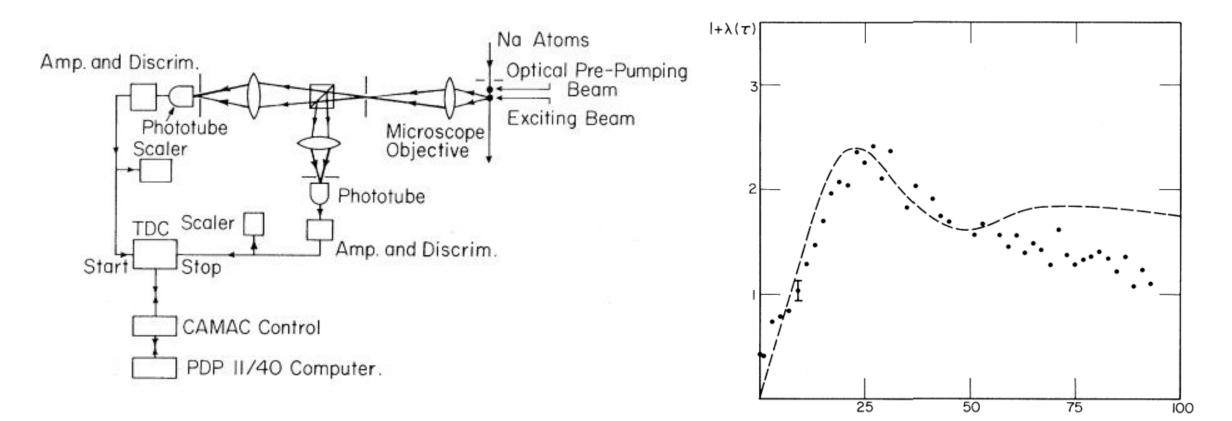
Photon statistics	Classical equivalents	I(t)	Δn
Super-Poissonian	Partially coherent (chaotic), incoherent, or thermal light	Time-varying	$>\sqrt{\overline{n}}\ \sqrt{\overline{n}}\ <\sqrt{\overline{n}}$
Poissonian	Perfectly coherent light	Constant	
Sub-Poissonian	None (non-classical)	Constant	

• But measuring statistics directly gives Poissonian mostly

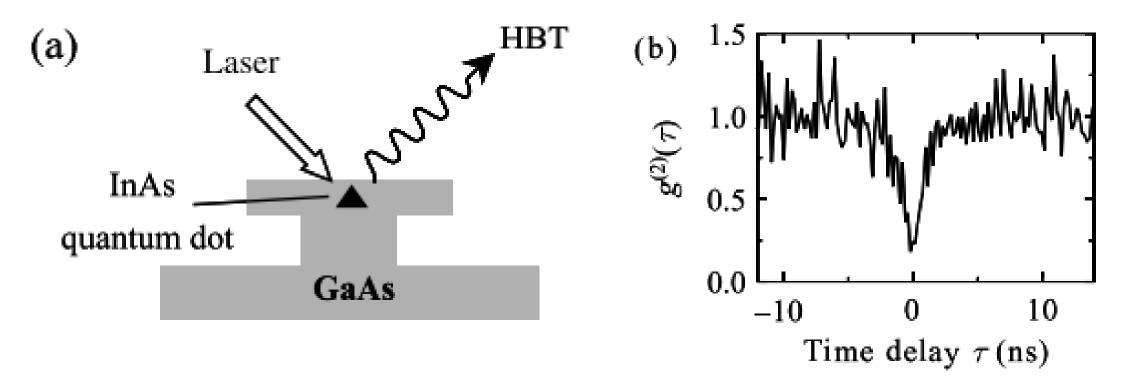
To measure second order coherence function, Hanbury Brown Twiss
 Interferometer is used



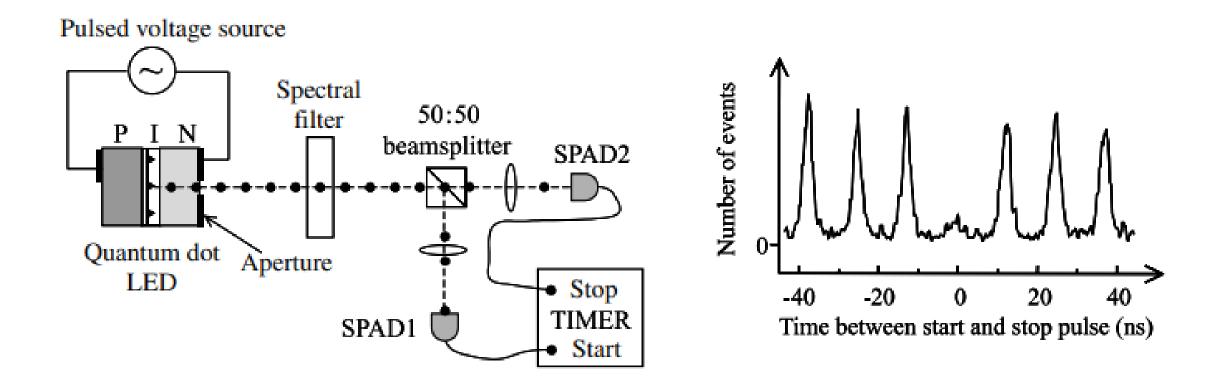
• It can be used to identify the antibunching mechanisms



• It can be used to identify the antibunching mechanisms



• Realisation of single photon emitters



Conclusions

- The first-order and second-order coherence functions give information about the underlying statistics in systems
- Temporal coherence function is measured in Michelson Interferometer
- Spatial coherence function is measured in Young's double slit interferometer
- More temporal coherence, lesser spectral width
 More spatial coherence, more directionality or narrowing in momentum space
- Intensity correlations are measured through HBT interferometer.
- Antibunching behaviour can be used to realise single photon sources