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• In physics wherever we studied about light, we assumed it to be 

monochromatic.

𝐄 = 𝐄𝐨 𝐞𝐱𝐩 −𝐢𝛚𝐭 + 𝛗

where 𝐸𝑜 is the amplitude and the 𝜔 is the frequency and 𝜑 is the phase
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But can we have a monochromatic source of light?

It turns out we can’t…!
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• From time dependent perturbation theory, we get an uncertainty relation,

∆𝐄. ∆𝐭 ≈ 𝐡/𝟐𝛑

• As a result, for ∆𝐄 = 0 we should have ∆𝐭 →∞. It means it may take infinite 

amount of time for transition.

• So in nature we always have a finite spread in the energy/frequency. 
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Monochromatic Random
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Instantaneous Intensity

Average Intensity

𝐼 = 𝑈(𝑟, 𝑡) 2
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𝜏𝑐

𝜏𝑐 - Longitudinal Coherence Time, 
so Longitudinal Coherence Length Lc = c 𝜏𝑐 where c is the speed of light  
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• To get coherence time we measure the auto-correlation function of the 

electric field.  

𝐺 𝜏 = 𝐸 𝑡 𝐸∗(𝑡 + 𝜏)

• The normalised auto-correlation of the electric field is called the 

coherence function.  

𝑔(1) 𝜏 =
𝐸 𝑡 𝐸∗(𝑡 + 𝜏)

𝐸 𝑡 𝐸∗(𝑡)

• From this temporal coherence function one can quantitatively calculate the 

coherence time of the field.
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• The temporal delay 𝜏 is along the longitudinal direction and the spatial 

separation ∆𝑟 is along the transverse direction.

𝑔(1) ∆𝑟, 𝜏 =
𝐸 𝑟1, 𝑡 𝐸

∗(𝑟2, 𝑡 + 𝜏)

𝐸 𝑟1, 𝑡 𝐸
∗(𝑟2, 𝑡)

• The same can be defined along with the spatial separation ∆𝑟.

∆𝑟 = |𝑟1 − 𝑟2|

• 𝑔(1) ∆𝑟 = 0, 𝜏 gives the temporal coherence function and

𝑔(1) ∆𝑟, 𝜏 = 0 gives the spatial coherence function.
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• This function is called the first-order coherence function and 𝑔(1) ∆𝑟, 𝜏

is called the degree of first-order coherence function.

𝑔(1) ∆𝑟, 𝜏 =
𝐸 𝑟1, 𝑡 𝐸

∗(𝑟2, 𝑡 + 𝜏)

𝐸 𝑟1, 𝑡 𝐸
∗(𝑟2, 𝑡)

• The same can be defined along with the spatial separation ∆𝑟.

∆𝑟 = |𝑟1 − 𝑟2|
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• If we consider a quasi monochromatic light with central frequency 𝜔𝑜

which changes with time by 𝜑(𝑡),

𝐸 = 𝐸𝑂𝑒
−𝑖𝜔𝑜𝑡𝑒𝑖𝜑(𝑡)

• Then 𝑔 1 𝜏 = 𝑒−𝑖𝜔𝑜𝑡 𝑒𝑖[𝜑 𝑡+𝜏 −𝜑(𝑡)] and so  0 ≤ |𝒈 𝟏 𝝉 | ≤ 1
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which changes with time by 𝜑(𝑡),

𝐸 = 𝐸𝑂𝑒
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• Then 𝑔 1 𝜏 = 𝑒−𝑖𝜔𝑜𝑡 𝑒𝑖[𝜑 𝑡+𝜏 −𝜑(𝑡)] and so   0 ≤ |𝒈 𝟏 𝝉 | ≤ 1

• Depending on the underlying spectral broadening mechanism the 

functional form of 𝑔 1 𝜏 varies.

• For Natural broadening 𝒈 𝟏 𝝉 = 𝒆−𝒊𝝎𝒐𝒕𝐞𝐱𝐩
−|𝝉|

𝝉𝒄
where 𝜏𝑐 = Τ1 ∆𝜔

For Doppler broadening 𝒈 𝟏 𝝉 = 𝒆−𝒊𝝎𝒐𝒕𝐞𝐱𝐩
−𝝅

𝟐

𝝉

𝝉𝒄

𝟐
where 𝜏𝑐 = ൗ8𝜋𝑙𝑛21/2

∆𝜔
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• According to Weiner Khintchine Theorem, the spectral distribution is the 

Fourier transform of the first-order temporal coherence function. 

𝐹 𝜔 =
1

2𝜋
න
−∞

∞

𝑔 1 𝜏 exp 𝑖𝜔𝜏 𝑑𝜏
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• The degree of coherence can be measured from the interference

experiments.

• If we interfere light beams with 𝐸(𝑡) and 𝐸 𝑡 + 𝜏 then, 

𝐼 = 𝐸(𝑡) 2 + 𝐸(𝑡 + 𝜏) 2 + 𝐸 𝑡 𝐸∗(𝑡 + 𝜏) + 𝐸∗ 𝑡 𝐸(𝑡 + 𝜏)

𝐼 = 𝐼1 + 𝐼2 + 2𝑅𝑒 𝐸 𝑡 𝐸∗(𝑡 + 𝜏)

𝐼 = 𝐼1 + 𝐼2 + 2 𝐼1𝐼2𝑅𝑒 𝑔 1 (𝜏)

𝑰 = 𝑰𝟏 + 𝑰𝟐 + 𝟐 𝑰𝟏𝑰𝟐 𝒈
𝟏 (𝝉) 𝒄𝒐𝒔𝝋

• This has the form 𝐼 = 𝐼1 + 𝐼2 + 2𝛾 𝑐𝑜𝑠𝜑 where 𝛾 is called visibility. 
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Visibility  = 
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
= 

2 𝐼1𝐼2

𝐼1+𝐼2
𝑔 1 (𝜏)

From measuring the visibility of the fringe one can calculate the degree of 

first order coherence.

16



17Optics, Eugene Hecht and A.R.Ganesan



Visibility  = 
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
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2 𝐼1𝐼2

𝐼1+𝐼2
𝑔 1 (𝜏)

From measuring the visibility of the fringe one can calculate the degree of 

first order coherence.

Now what interferometer should we use?
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• For measuring temporal coherence we use Michelson Interferometer 
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• For measuring spatial coherence we use Young’s double slit experiment
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• Temporal filtering
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Let us see some places where these measurments are used
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• Use in Optical Coherence Tomography (OCT)

27Fundamentals of Photonics, Saleh and Teich



• OCT has main application in Ophthalmology 10.15761/NFO.1000130

28

Turgut B, Demir T (2016) The new 

landmarks, findings and signs in 

optical coherence tomography. New 

Front Ophthalmol 2



• It also used in astronomy to measure angular radius of the planets by 

Michelson stellar interferometry
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• It also used in astronomy 

to measure angular 

radius of the planets by 

Michelson stellar 

interferometry 

30Eur. J. Phys. 38 (2017) 045704



• For understanding the process of lasing in different systems

Plasmonic 

systems

31
Thang B. Hoang, Gleb M. Akselrod, Ankun Yang, Teri W. 

Odom, and Maiken H. Mikkelsen Nano Letters 2017 17 (11), 

6690-6695
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• For understanding the process of lasing in different systems

Laser diodes
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• For understanding the process of lasing in different systems
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• For understanding the process of lasing in different systems
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• For studying the Bose Einstein Condensates (BEC)

Photonic condensates 

see when condensate 

forms

37Damm, T., Dung, D., Vewinger, F. et al. First-order spatial coherence measurements in a thermalized two-dimensional 

photonic quantum gas. Nat Commun 8, 158 (2017)
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• For studying the Bose Einstein Condensates (BEC)

Condensates of Indirect Excitons

39
High, A., Leonard, J., Hammack, A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012)



• For studying the Bose Einstein Condensates (BEC)
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• For providing some indirect evidences for processes in excitonic systems

41Mohit Kumar Singh et al 2019 J. Phys. D: Appl. Phys. 52 095102



Can we have correlations in Intensity?
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• So we do second order coherence measurements, the second order 

coherence function is given as 

𝑔(2) 𝜏 =
𝐸∗ 𝑡 𝐸(𝑡 + 𝜏) 𝐸∗(𝑡 + 𝜏)𝐸 𝑡

𝐸 𝑡 𝐸∗(𝑡) 𝐸 𝑡 + 𝜏 𝐸∗(𝑡 + 𝜏)
=

𝐼 𝑡 𝐼 (𝑡 + 𝜏)

𝐼(𝑡) 𝐼(𝑡 + 𝜏)

𝑔(2) 𝜏 =
𝑛 𝑡 𝑛′(𝑡 + 𝜏)

𝑛(𝑡) 𝑛′(𝑡 + 𝜏)
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• We will discuss the photon picture.

• The photon flux, 𝜑 =
𝐼𝐴

ℏ𝜔
and the average count rate 𝑅 = 𝜂

𝐼𝐴

ℏ𝜔
where 𝜂 is 

the quantum efficiency

• There is a dead time of 1 𝝁s (approx.) for photodetectors which limits 

the photon count measurements.

• For intensity correlation measurements we need low intensity light i.e., 

photon picture
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• Now if we calculate the probability P(n) of finding n photons in within a 

beam of length L containing n segments then we get,

• But measuring statistics directly gives Poissonian mostly
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• To measure second order coherence function, Hanbury Brown Twiss 

Interferometer is used

48Quantum Optics – An Introduction, Mark Fox



• It can be used to identify the antibunching mechanisms

49H.J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett., 39, 691 (1977)



• It can be used to identify the antibunching mechanisms
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• Realisation of single photon emitters

51
Quantum Optics – An Introduction, Mark Fox



• The first-order and second-order coherence functions give information 

about the underlying statistics in systems 

52

• Temporal coherence function is measured in Michelson Interferometer

• Spatial coherence function is measured in Young’s double slit interferometer 

• Intensity correlations are measured through HBT interferometer. 

• More temporal coherence, lesser spectral width

More spatial coherence, more directionality or narrowing in momentum space

• Antibunching behaviour can be used to realise single photon sources  
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