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Introduction Quantum Machine learning

Welcome to the World of Machine Learning!

What is Machine Learning?
Imagine teaching a computer to make predictions without giving it
direct instructions.
Just like how we learn from experiences, machine learning algorithms
learn from data.

In Simple Terms:
Feed the machine data, and it finds patterns to make decisions on its
own!

Why Should You Care?
It’s everywhere! From self-driving cars to recommendations on Netflix,
it’s behind the scenes of our everyday tech.
The 2024 Nobel Prize in Physics was awarded to John J. Hopfield and
Geoffrey E. Hinton for their foundational work in machine learning
using artificial neural networks.
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Introduction Quantum Machine learning

Machine learning

The entire machine learning process can be looked at as estimation of
an unknown function that a given data as follows:

Input vectors {xi}ni=1 ⊂ Rd

Output values {yi}ni=1 ⊂ R
We want to estimate the function f ∗(xi ) = yi

Regression: yi is a continuous value, Classification: yi is a discrete
value.

f ∗(xi ) can be linear and non-linear in xi .
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Introduction Quantum Machine learning

Kernel Methods

Map input data to high-dimensional feature spaces ϕ : Rd → H,
where H is a high-dimensional feature space.

A nonlinearity in the input space can be linear in the feature space.

Requires the inner product of input vectors in the feature space to
find this decision boundary.

Kernel Function: A function K (xi , xj) that computes the inner
product in the feature space.
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Introduction Quantum Machine learning

Kernel Methods

Figure: Data points tha follow
y = x + x2

Figure: x mapped to (x , x2)
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Introduction Quantum Machine learning

The Four Paradigms of Quantum Machine Learning

Quantum Machine Learning (QML) sits at the intersection of
quantum computing and classical machine learning.

Four key paradigms of QML:
1 Quantum-enhanced machine learning: Accelerates classical

algorithms using quantum processors.
2 Quantum-applied machine learning: Classical methods are applied

to quantum systems.
3 Quantum-inspired machine learning: Classical algorithms inspired by

quantum theory principles.
4 Fully quantum machine learning: Both data and algorithms are

quantum in nature.
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Introduction Motivation and Objectives

Motivation and Objectives

Focus of my project:
First and the last paragidms: quantum-enhanced and fully quantum
machine learning.
Emphasis on quantum kernel methods within the context of NMR
quantum computers.

Why Kernel Methods:
Crucial for handling non-linear tasks in classical machine learning.
Quantum kernel methods extend classical kernels by embedding data
into large Hilbert spaces natural to quantum systems.

Objective: Devise methods to compute quantum kernels using NMR
quantum computers to solve machine learning tasks.
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Quantum Kernel Methods

Quantum Kernel Methods

Classical kernels: Predefined functions that computes the inner
product in the feature space.

Such a function has feature space mapping inherent in it.

Examples:

Polynomial kernel: K (xi , xj) = (xi · xj + 1)d

Gaussian kernel: K (xi , xj) = exp
(
−∥xi−xj∥2

2σ2

)
Quantum kernel methods: Map classical data into quantum states
(or operators) in the exponentially large Hilbert space.

The inner product in this Hilbert space is computed using various
quantum computing techniques.
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Quantum Kernel Methods

Quantum Feature Mapping

Define a mapping from input vectors to quantum states or operators
in a quantum system: xi → ϕ(xi ).

These quantum states or operators exist in a quantum feature space -
Hilbert space of the system.

Quantum kernel k(xi , xj) would inner product ϕ(xi ) and ϕ(xj).

Devise a method to compute this inner product using all the
operations that a quantum system allows.
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Quantum Kernel Methods

Quantum Kernel Computation

Encode two input data point: The system is evolved using a input
depended unitary transformation.

Then the system is allowed to evolve on it’s own or with some other
fixed unitary transformation that let’s the system explore the Hilbert
space.

Once input data is mapped to quantum states, the kernel function is
computed by making certain measurements on the evolved system.

Quantum

System

Input 1

Input 2

Evolution Evolved

Quantum

System

Measurement

Kernel Value
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Quantum Kernel Methods

Applications of Quantum Kernel Methods

Quantum kernel methods are used in Quantum Support Vector
Machines (QSVMs), Quantum Kernel Ridge Regression (QKRR), etc.

Our focus: Quantum kernels have the potential to handle quantum
data for quantum tasks.

The input data in quantum tasks consists of quantum states or
operators, which exist in the Hilbert spaces.
Quantum tasks include classification of unitary operators, entanglement
classification, quantum state discrimination, etc.

All this works in principle; the challenge is in the experimental
realization of quantum kernels.
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Quantum Kernel in Nuclear Spin Systems
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Quantum Kernel in Nuclear Spin Systems Quantum Computing in Liquid State NMR

Quantum Computing in Liquid State NMR

Nuclear Spins as Qubits: In liquid state NMR, nuclear spins of
molecules in a liquid are used as qubits.

Quantum Gates: Quantum operations (gates) are implemented by
applying precise sequences of RF pulses.

Measurement: The final state of the qubits is measured by detecting
the NMR signal, which corresponds to the magnetization of the spins.

Advantages: Liquid state NMR allows for high precision control and
manipulation of qubits, making it suitable for small-scale quantum
computations.
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Quantum Kernel in Nuclear Spin Systems Quantum Computing in Liquid State NMR

Density Matrix Formalism

Density Matrix for Pure States:
The density matrix ρ for a pure state |ψ⟩ is defined as:

ρ = |ψ⟩⟨ψ|

Mixed States:
For a mixed state, which is a statistical ensemble of pure states |ψi ⟩
with probabilities pi , the density matrix is:

ρ =
∑
i

pi |ψi ⟩⟨ψi |

The action of a unitary operator U on a density matrix ρ is given by:

ρ→ UρU†

For an observable A, the expectation value in a state described by ρ is
given by:

⟨A⟩ = Tr(ρA)
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Quantum Kernel in Nuclear Spin Systems Quantum Computing in Liquid State NMR

Essence of the Density Matrix

Why the Density Matrix?
Describes how to compute measurable quantities (observables) even
when full information is not available.
Can represent statistical mixtures of quantum states, not just coherent
superpositions.

Pure vs Mixed States:
Pure State: Complete knowledge of the system, represented by a
state vector |ψ⟩.
Mixed State: Partial knowledge, or a statistical mixture of pure
states, represented by a probability distribution over them.

Vivek Sabarad (IISER Pune) Quantum Learning in Nuclear Spins October 17, 2024 17 / 41



Quantum Kernel in Nuclear Spin Systems Quantum Kernel in NMR

Quantum Feature Mapping

Classical data is encoded into quantum states of nuclear spins using a
unitary transformation, U(xi ).

Consider the data-dependent operator, A(xi ) = U(xi )IzU
†(xi ) which

serves as a feature map in a high-dimensional space.
where, Iz(=

∑n
µ=1 Iz,µ) → total z-magnetization

Iα,µ (α = x , y , z) → α-component for the µ-th spin.
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Quantum Kernel in Nuclear Spin Systems Quantum Kernel in NMR

Quantum Kernel Computation

Kernel is defined with the Frobenius inner product in this operator space:

kNMR(xi , xj) = Tr(A(xi )A(xj))

= Tr(U(xi )IzU(xi )
†U(xj)IzU(xj)

†)

Using, ρeq ≈ 1
2n (1 + ϵIz) as the equilibrium state:

kNMR(xi , xj) ∝ Tr(U(xj)
†U(xi )ρeqU(xi )

†U(xj)Iz)

Here, U(xj) is called the encoding unitary.
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Quantum Kernel in Nuclear Spin Systems Experimental Implementation

Spin System

Assuming the input vectors are one-dimensional, the encoding unitary
is chosen as follows:

U(xi ) = e−ixi IzUee
ixi Iz

where Ue is the entangling unitary.

Implemented using star systems in liquid state NMR:
1 Both C and A spins are used to encode the data.
2 The unitary Ue entangles all the A spins with the central spin C.
3 The measurement is done only on the central spin C.

C

A

A
A

A

A

A
A

A

A
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Quantum Kernel in Nuclear Spin Systems Experimental Implementation

Quantum Circuit

Computing the kernel between two inputs xi and xj : k(xi , xj)

U(xi) U(xj)
†

C R i†
z H R i

z R j†
z H R j

z Ry (90
◦)

A R i†
z R i

z R j†
z R j

z

For two-dimensional inputs: xi = (x1i , x
2
i ), the encoding unitary is

given by:

U(xi ) = e−ix
(1)
i Iz e−ix

(2)
i IzUee

ix
(2)
i Iz e ix

(1)
i Iz
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Quantum Kernel in Nuclear Spin Systems Results

Results - 1D Regression

One-dimensional regression task
is done by kernel ridge
regression.

The regression task is performed
on a sine curve for one period.

The size of the training data is
15.
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Quantum Kernel in Nuclear Spin Systems Results

Results - 1D Regression

This slide shows the results of
regressing an 8th-degree
polynomial.

The size of the training data is
40.
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Quantum Kernel in Nuclear Spin Systems Results

Results - 2D Classification

A two-dimensional classification task is done using a support vector
machine (SVM) classifier.

The SVM inherently uses the kernel matrix for classification.
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Quatnum Task: Entanglement Classification

Entanglement Classification

The task is to classify entangled and non-entangled states.

The inputs are two-qubit states and the output is binary.

The objective is to be able to classify the states using the kind of
quantum kernel methods we have developed.
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Quatnum Task: Entanglement Classification

Quantum Kernel Computation

Encoding the two-qubit states into
the nuclear spins:

U(ψi ) = Uψi
UeU

†
ψi

The encoding unitary Uψi
is the

preperation unitary of the state ψi :
ψi = Uψi

|00⟩.
The entangling unitary Ue entangles
the multiple two-qubit systems to
the central spin.
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Quatnum Task: Entanglement Classification

Quantum states

Quantum circuit representing the preperation unitaries for the states
used in the task.

A Ry (θ)

B Ry (α)

These unitaries act on the thermal states creating entangled states for
some range of values of θ and α.

The task is to classify these states as entangled or non-entangled
given a training data set.
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Quatnum Task: Entanglement Classification

Numerical results

Numerical results for the entanglement classification task with
training data set of 32 states.
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Conclusion

Conclusion

Quantum Kernels: We’ve explored the fascinating world of quantum
kernels, where classical data meets quantum states, opening up new
possibilities for machine learning.

NMR Systems: By leveraging nuclear spin systems, we’ve
demonstrated how quantum feature mapping and kernel computation
can be practically implemented.

Applications: From regression tasks to entanglement classification,
quantum kernels show promise in tackling both classical and quantum
problems.

Future Directions: The experimental realization of quantum kernels
is just the beginning. Imagine the potential as quantum computing
technology continues to advance.
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Appendix Kernel Methods in Regression

Linear Regression: Overview

Objective: Model the relationship between dependent and
independent variables.

Finds the best-fitting linear equation to describe the data.

Given dataset: {(xi , yi )}Ni=1, where xi ∈ Rd and yi ∈ R.
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Appendix Kernel Methods in Regression

Linear Model

Linear Model:
yi = f ∗(xi ) + ϵi

where:

f ∗(xi ) = wT xi + b

wT xi is the weighted sum of features.

b is the bias term.
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Appendix Kernel Methods in Regression

Cost Function

Mean Squared Error (MSE) Cost Function:

J(w , b) =
1

N

N∑
i=1

(yi − wT xi )
2

Aim is to minimize J(w , b).

Solution given by the normal equation:

w = (XTX )−1XT y

Vivek Sabarad (IISER Pune) Quantum Learning in Nuclear Spins October 17, 2024 35 / 41



Appendix Kernel Methods in Regression

Regularization

Regularized Cost Function (Ridge Regression):

J(w) =
1

N

N∑
i=1

(yi − wT xi )
2 + λ∥w∥2

Adds a penalty to avoid overfitting.

λ controls the trade-off between fitting the training data and model
complexity.
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Appendix Kernel Methods in Regression

Kernel Ridge Regression: Feature Mapping

Handles non-linearity by transforming input data into a
higher-dimensional feature space.

Transformation via a non-linear function φ : Rd → F .

The relationship becomes linear in the transformed space:

f ∗(xi ) = wTφ(xi )
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Appendix Kernel Methods in Regression

Kernel Trick

Kernel Trick:

Directly computes inner product in feature space without explicit
transformation.

Kernel function:
k(xi , xj) = ⟨φ(xi ), φ(xj)⟩

No need to compute φ(x) explicitly.
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Appendix Kernel Methods in Regression

Derivation of the Kernel Trick

Step 1: Representing the weight vector:

w =
N∑
i=1

αiφ(xi )

Step 2: Substituting in the cost function:

J(α) =
1

N

N∑
i=1

yi − N∑
j=1

αj⟨φ(xj), φ(xi )⟩

2

+ λ
∑
i ,j

αiαj⟨φ(xi ), φ(xj)⟩

Step 3: Using the kernel function:

J(α) =
1

N

N∑
i=1

yi − N∑
j=1

αjk(xj , xi )

2

+ λ
∑
i ,j

αiαjk(xi , xj)
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Appendix Kernel Methods in Regression

Prediction Function: Using Kernel Trick

Once αi values are optimized, the prediction function becomes:

f (x) =
N∑
i=1

αik(xi , x)

No need to compute the high-dimensional features φ(x) explicitly.
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Appendix Kernel Methods in Regression

Common Kernel Functions

Linear Kernel: k(xi , xj) = xTi xj

Polynomial Kernel: k(xi , xj) = (xTi xj + c)d

RBF Kernel: k(xi , xj) = exp
(
−∥xi−xj∥2

2σ2

)
Sigmoid Kernel: k(xi , xj) = tanh(αxTi xj + c)
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