TAUS AND JETS

Introduction And Analysis

1

- Shweta Shankar

STANDARD MODEL

- The Standard model is a simple depiction which describes the fundamental particles in the universe.
- It depicts the following properties of each fundamental particle-symbol, charge, mass and spin.
- Quarks and gluons have another property called colour charge, which leptons and other bosons do not have.

three generations of matter interactions / force carriers (fermions) (bosons) Π III ≈1,273 GeV/c² ≈2.16 MeV/c² ≈172.57 GeV/c² ≈125.2 GeV/c² charge t Η С a u spin charm top gluon higgs up ≈93.5 MeV/c² ≈4.183 GeV/c² ≈4.7 MeV/c² UARKS d S b SCALAR BOSO 1/2 down strange bottom photon ≈0.511 MeV/c² ≈105.66 MeV/c² ≈1.77693 GeV/c² ≈91.188 GeV/c² GAUGE BOSONS VECTOR BOSONS е Ζ τ μ 1/2 electron tau Z boson muon SS <18.2 MeV/c² <0.8 eV/c² <0.17 MeV/c² ≈80.3692 GeV/c² **EPTOI** v_e Vu W electron muon tau W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

COLOUR CHARGE

- Arose as a consequence of Pauli's Exclusion Principle.
- Quarks can be further divided into 6 types based on colour charge
 - i. 3 Colour : Red, Blue and Green.
 - ii. 3 Anti-Colour : Cyan, Magenta and Yellow.
- Each gluon carries 2 colour charges. They needn't be colour neutral.
- Quarks interact among themselves through exchange of gluons, and each interaction should follow conservation of colour charge. These interactions give rise to strong force.

HADRONS

- Quarks cannot exist individually as they have Fractional charge and Colour charge.
- Groups of quarks come together and form colour neutral hadrons.
- Manifested hadrons are what are detected, not individual quarks!

CMS PARTICLE DETECTOR

6

WHAT IS A JET?

- A collection of **Hadrons** which are relatively close to each other than some others, as if they are produced by the same particle, form a Jet.
- Jets are found using clustering algorithms.
- The jet properties (4-vector) must correlate well with the properties of initial particle giving rise to it.

CMS Experiment at the LHC, CERN Data recorded: 2017-Aug-20 18:16:45.926208 GMT Run / Event / LS: 301472 / 634226645 / 664

WHAT IS TAU?

- It is a Lepton!
- Is heavy. It's mass= 1.78 GeV.
- Has -1 charge.
- Life time= 2.8×10^{-13} seconds.
- Approx. Travel distance = $50 \, \mu m$
- So it decays into other fundamental particles well before it can be detected.
- It can decay into a bunch of leptons or a bunch of hadrons.

LEPTONIC DECAY OF TAUS

- A tau lepton can decay into other leptons such as electrons, muons and neutrinos.
- This is usually easy to detect as electrons and muons get detected easily.
- Presence of neutrinos found through momentum balancing.

HADRONIC DECAY OF TAUS

• A tau lepton can also decay into a bunch of hadrons, usually into pions, through modes, 1-prong or 3 prong.

HADRONICALLY DECAYING TAU AND JET SIMILARITY

• Signal Signature of Tau.

• Signal Signature of Jet.

FAKE RATE ANALYSIS

- Tau signals and jet signals clearly look very similar, hence each can fake to be the other!
- What is the rate at which a Jet fakes a Tau? NOT DEFINITE!
- Fake Rate was calculated with the following :-

• This rate changes with application of a certain condition on selection criteria of Jets.

JET PROPERTIES WHICH I USED FOR SELECTION

- Jet Catchment Area
- Jet mass
- Jet_btagDeepFlavB
- Charged Electromagnetic Energy Fraction
- Charged Hadron Energy Fraction
- Number of particles in the jet
- Neutral Electromagnetic Energy Fraction
- Neutral Hadron Energy Fraction

AREA RESTRICTION

Fake rate before this restriction – 0.00445 ± 0.00008 Fake rate after this restriction – 0.00451 ± 0.00008

AREA+MASS RESTRICTION

Fake rate before this restriction – 0.00451 ± 0.00008 Fake rate after this restriction – 0.0089 ± 0.0002

AREA+MASS +NC RESTRICTION

Fake rate before this restriction – 0.0089 ± 0.0002 Fake rate after this restriction – 0.0122 ± 0.0003

0.2

0.4

0.8

Charged_Hadronic_Energy_Fraction

0.6

AREA +MASS +NC+ NEHEF RESTRICTION

Fake rate before restriction – 0.0122 ± 0.0003 Fake rate after area restriction – 0.0135 ± 0.0004

<figure>

OVERLAID PLOT OF MATCHING JET

THANK YOU!