Searching for right-handed neutrinos

Niveditha Warrier

Advisor: Prof. Sourabh Dube

Right-handed neutrinos

Standard Model of Elementary Particles

- All observed neutrinos are left-handed
- Right handed neutrinos (if any), must be different from left-handed ones
- Could they be of a higher mass?

Particle Detector

Different SM particles interact differently with the detector.

Only some particles can be detected directly; others have to be inferred from some combination of the ones that *can* be detected

Final States

Proposed Feynman diagram:

Signal (what we're looking for)
Right Handed Neutrinos: final state - 3 leptons (electrons or muons)

Background

A bunch of other processes that could also have the same final state of 3 leptons - WZ, ZZ, ttbar, etc.

What next?

- Make simulations of different masses of RHNs
- Plot different quantities with simulated data and study their properties
- See how it can be differentiated from background

Simulations of several hypothetical masses of RHNs of both muon-type and electron-type were used

Masses: 10 GeV, 20 GeV, 200 GeV

Similarity between N_{μ} (m = 10 GeV) and N_{μ} (m = 20 GeV)

Missing E_T

Difference between N_{μ} (m = 10 GeV) and N_{μ} (m = 200 GeV)

Analysis

Stack all background plots

Overlay the signal

See where cuts can be made such that signal is high and background is low

Aim: Improve S/sqrt(B) without compromising on signal efficiency

Cuts for low-mass region

Initial S/sqrt(B): 166.291

 M_{ll} < 75 GeV

S/sqrt(B): 262.514

 $35 < M_{|||} < 80 \text{ GeV}$

S/sqrt(B): 387.761

- Initial S/sqrt(B) = 166.291
- Initial signal efficiency = 0.267909

Cuts:

- $p_{T}(l^{0}) > 25 \text{ GeV}$
 - $M_{11} < 75 \text{ GeV}$
 - $-35 < M_{111} < 80 \text{ GeV}$
 - $\Delta R_{1011} < 0.4$ or $\Delta R_{1011} > 1.8$ - $\Delta R_{1112} < 1$ or $1.9 < \Delta R_{1112} < 4.2$
- Final S/sqrt(B) = 571.903
- Final signal efficiency = 0.203351

- $m_T^0 < 100 \text{ GeV}$
- $m_{\rm T}^2 < 50 \text{ GeV}$ - $\Delta R_{(L1L2 - MET)} < 4$
- $L_T < 90 \text{ GeV}$ - $\Sigma M_{11} < 120 \text{ GeV}$

Cuts for high-mass region

Initial S/sqrt(B): 131.861

M_{||} >110 GeV

S/sqrt(B): 204.08

 $\Delta R_{(L0L1 - MET)} > 0.5$

S/sqrt(B): 204.99

- Initial S/sqrt(B) = 131.861
- Initial signal efficiency = 0.605997

Cuts:

- $p_{T}(l^{0}) > 50 \text{ GeV}$
 - $-p_{T}(l^{1}) > 30 \text{ GeV}$
 - $M_{II} > 110 \text{ GeV}$
 - $-1 < \Delta R_{1.011} < 4.5$

- $\Delta R_{1.01.2} < 4.5$ and $\Delta R_{1.11.2} < 4.5$

- Final S/sqrt(B) = 234.705
- Final signal efficiency = 0.436236

- $\Delta R_{(LOL1 MET)} > 0.5$
- $\Delta R_{(L1L2 MET)} < 4$ $-L_{\rm T} + MET > 200$

- $\Delta \phi_{(L0 - L1L2)} > 0.7$

Thank You!