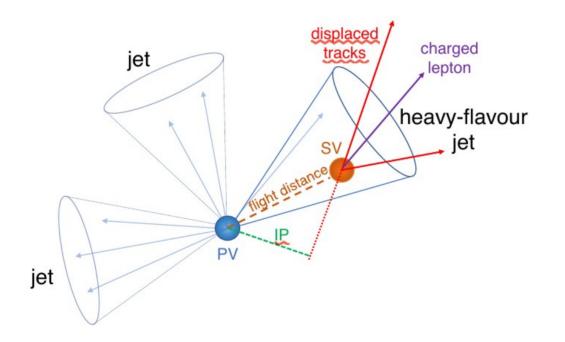


Meghana Ajith BSMS 2nd Year

Quark and their respective Jets

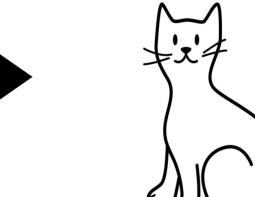


But how does one make sense of this
spread of particles detected?
→ Jet reconstruction Algoritthms

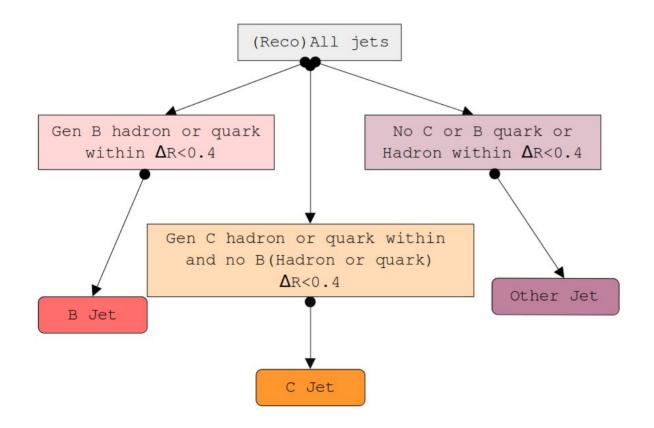
4 Vector, number and properties of constituents, Secondary vertex properties of each Reconstructed Jet

> Secondary Vertex????

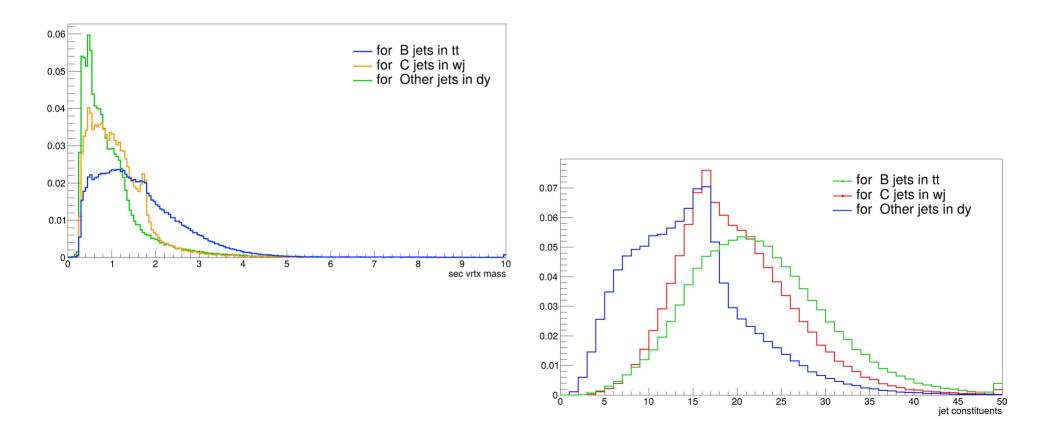
About SVX



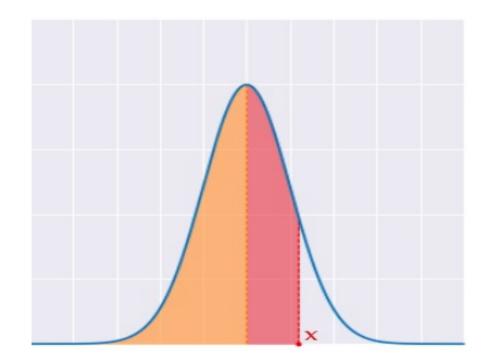
SVX is reconstructed from tracks displaced from the primary vertex


Generated and Reconstructed

- Using simulations , we generate collision events and produce detector signatures as we would for real collisions
- Then we use our usual reconstructing mechanisms to make reconstructed info

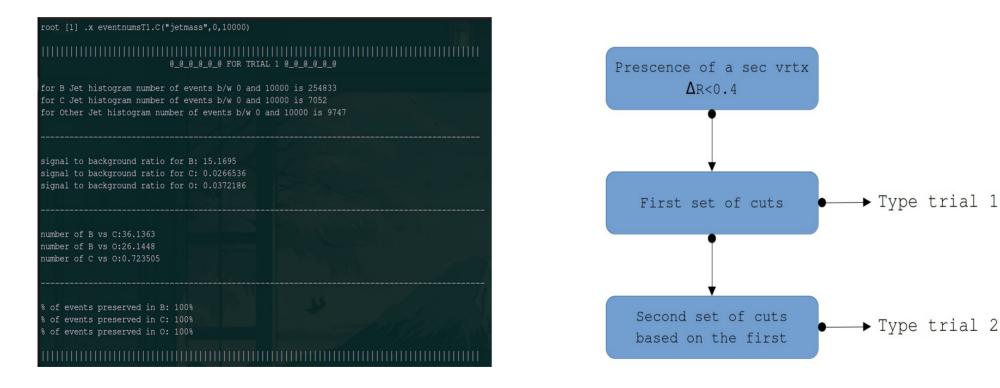


Sorting Jets based on Gen info



Secondary Vertices are also sorted similarly

A whole slew of propeties were plotted


Objective: find a range of these properties that preserve a "respectable" amount of Bjets while seperating them from others

Respectable??

How much seperation??

Efficiency→how much of the Bjets were tagged as B Jets MisId Rate→ how much of non B Jets were tagged as BJets

Cuts-all max sig w/ specified min preservation w/ no prev cuts

Preservation of B jets	SV nTracks	SV mass	Jet mass	Jet nCons	ε _b	E c	٤	ε _{b/εο}	ε _{b/εc}
>25%	(4,15)	(2,10)	>13	>29	1.693%	0.142%	0.055%	30.78	11.92
>50%	>3	(1,10)	>10	>2	8.332%	0.901%	0.230%	36.22	9.24
>75%	(2,5)	(0,10)	(8,1000)	>19	21.530%	3.463%	0.685%	31.43	6.21

Cuts- max sig w/ preservation specified for SV nTracks>3

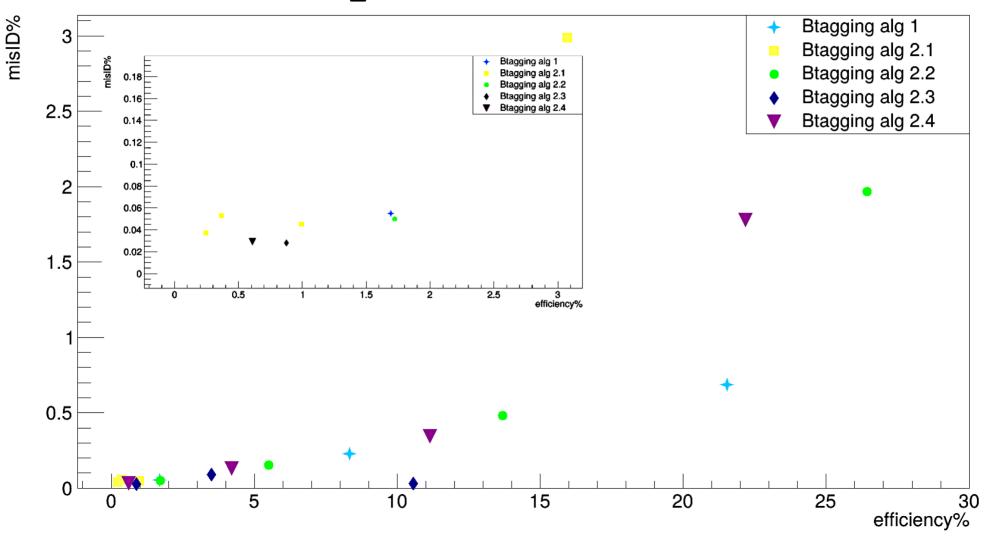
Preservation of B jets	SV nTracks	SV mass	Jet mass	Jet nCons	ε _b	ε _c	٤٥	Ε _{b/εο}	ξ b/εc
>25%	>3	>2.5	>15	(31,45)	0.995%	0.115%	0.045%	22.11	8.65
>50%	>3	>2	>12	(26,45)	0.245%	0.037%	0.012%	20.41	6.62
>75%	>3	>1	>9	(20,45)	0.368%	0.053%	0.016%	23.00	6.94
No other parameter	>3				15.954%	2.988%	0.655%	24.35	5.33

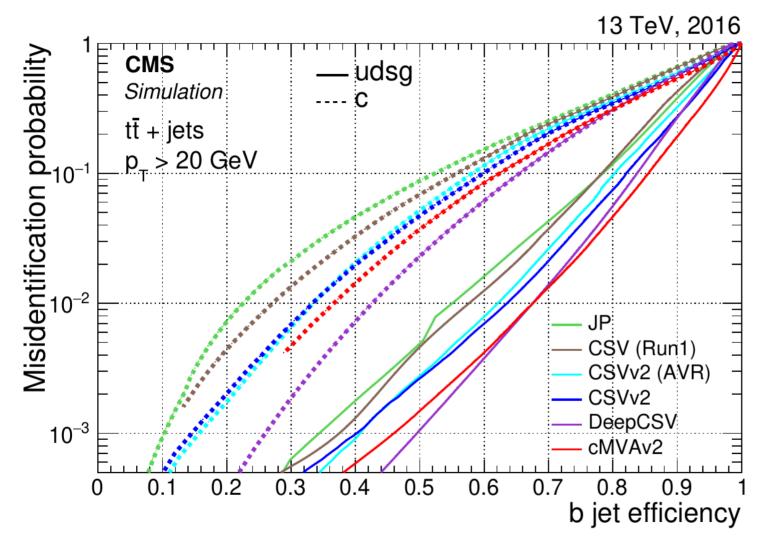
Cuts- max sig w/ preservation specified for Jetmass>10

Preservation of B jets	SV nTracks	SV mass	Jet mass	Jet nCons	ε	٤ _c	٤٥	Ε _{b/εο}	ξ _{b/εc}
>25%	>4	>1	>10	>23	1.724%	0.139%	0.050%	34.48	12.40
>50%	>3	>0.5	>10	>28	5.510%	0.572%	0.155%	35.54	9.63
>75%	>2	>0	>10	>33	13.685%	2.190%	0.482%	33.22	6.24
No other parameter			>10		26.432%	6.639%	1.967%	13.43	3.98

Cuts- max sig w/ preservation specified for SV mass $\mathcal{E}(1,10)$

Preservation of B jets	SV nTracks	SV mass	Jet mass	Jet nCons	ε _b	٤c	٤٥	ε _{b/εο}	ε _{b/εc}
>25%	>5	(1,10)	>15	>30	0.876%	0.065%	0.028%	31.28	13.47
>50%	>4	(1,10)	>12	>25	3.506%	0.282%	0.089%	39.39	12.43
>75%	>3	(1,10)	>9	>20	10.564%	1.285%	0.031%	34.07	8.22
No other parameter		(1,10)			28.587%	8.888%	2.405%	11.86	3.21


Cuts- max sig w/ preservation specified for Jet cons>23


Preservation of B jets	SV nTracks	SV mass	Jet mass	Jet nCons	ε _b	٤c	E 。	ε _{b/εο}	ξ _{b/εc}
>25%	>5	>2	>18	>23	0.610%	0.072%	0.029%	21.03	8.47
>50%	>3	>1.5	>14	>23	4.213%	0.418%	0.129%	32.65	10.07
>75%	>2	>1	>11	>23	11.150%	1.541%	0.344%	32.41	7.23
No other parameter				>23	22.182%	5.907%	1.776%	12.48	3.75

- - Best performance in $\mathbf{E}_{\mathbf{b}}/\mathbf{E}_{\mathbf{o}}$
- - Worst performance in E_b/E_o
- - Best performance in E_b/E_c
- - Worst performance in $\varepsilon_{b}/\varepsilon_{c}$
- - Highest $\boldsymbol{\epsilon}_{\mathbf{b}}$
- - Lowest $\boldsymbol{E}_{\mathbf{b}}$

Trial	SV nTrack	SV mass	Jet mass	Jet nCons	ε	ε _c	٤٥	ξ _{b/εο}	ξ b/εc	
2.3		(1,10)			28.587%	8.888%	2.405%	11.86	3.21	
2.3	>5	(1,10)	>15	>30	0.876%	0.065%	0.028%	31.28	13.47	
2.3	>4	(1,10)	>12	>25	3.506%	0.282%	0.089%	<u>39.39</u>	12.43	
2.1	>3	>2	>12	(26,45)	0.245%	0.037%	0.012%	20.41	6.62	
	Best performan									
- Worst performance in $\epsilon_{b}/\epsilon_{o}$										
- Best performance in ϵ_b/ϵ_c										
- Worst performance in $\epsilon_{b}/\epsilon_{c}$										
-	Highest $\boldsymbol{\epsilon}_{\mathbf{b}}$									
-	Lowest $\boldsymbol{\epsilon}_{\mathbf{b}}$									

Efficiency vs misID

Plot from CMS ID of heavy flavour jets using different NN

JINST 13 (2018) P05011

Acknowledgements

Thank You!