Investigating the Hubble Tension with Type Ia Supernovae For Aakashganga & Science Club, IISER Pune

Anargha Mondal

Indian Institute of Science Education and Research, Pune

November 14, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 A Brief Introduction

- A Theory for the Beginning
- The ACDM model
- The Hubble Constant
- A Nobel Prize
- Type la Supernovae
- 2 A Problem
 - All is not well with ACDM
 - The Hubble Tension
- 3 Our Methodology
 - The Pantheon Sample
 - Redshift Binned Analysis
 - Posterior and Likelihoods: MCMC Sampling
- 4 Results
 - Evolution of the Hubble Constant with Redshift

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 5 Discussion and Interpretation
 - Astrophysical Selection Biases
 - Theoretical Interpretation
- 6 Conclusions

A Brief Introduction

A BRIEF INTRODUCTION

A Brief Introduction

└─A Theory for the Beginning

A Theory for the Beginning

While trying to build static universe models, Einstein introduced the cosmological constant.

•
$$\rho_{\rm vac} = \frac{\Lambda}{8\pi G}$$

- We interpret this as energy of the vacuum ($p = -\rho_{vac}$).
- Non-zero vacuum energies are expected in certain field theories, like zero-point fluctuations in quantum fields.

A Brief Introduction

└─The ΛCDM model

The ACDM model

- The standard cosmology is based on the well-known ACDM (cold dark matter) model.
- It relies on the existence of a cosmological constant Λ with an equation-of-state parameter w = -1 and a CDM component.
- This model is the most widely accepted paradigm to explain the structure and evolution of the late universe.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Brief Introduction

└─ The Hubble Constant

The Hubble Constant

- $H_0 = \frac{\dot{a}}{a}$
- Initial measurements of this value by Edwin Hubble¹using Cepheids from the LMC seemed to imply that the age of the universe was less than that expected for the solar system.
- The measurement of *H*⁰ improved from 10% uncertainty at the start of the 2000s to less than 2% by 2019.
- Planck 2018 in a flat Λ CDM model for the Hubble constant is $H_0 = 67.27 \pm 0.60$ km s⁻¹ Mpc⁻¹ at 68% CL²

¹Hubble, 1929, A relation between distance and velocity of extra-galactic nebulae

²Planck Collaboration, Planck 2018 results. VI. Cosmological parameters 🚊 🗠

- └─A Brief Introduction
 - └─ The Hubble Constant

Figure: The Planck CMB map³

イロト イロト イヨト イヨト 三日

└─A Brief Introduction

└─ The Hubble Constant

Measurements

- Acoustic Peaks and Sound Horizon from the CMB
- Local measurements
 - Type Ia SNe
 - GRBs
 - Local Cepheids

A very powerful property that all Cepheids share:

$$\mu_{th} = m - M = 5\log d_L + \text{constant}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- └─A Brief Introduction
 - └─ The Hubble Constant

Figure: The Hubble Diagram for the Pantheon Sample of Type Ia ${\rm Supernoave}^4$

<ロト <回ト < 注ト < 注ト

э

⁴Source: Scolnic et al, 2018

A Brief Introduction

└─A Nobel Prize

A Nobel Prize⁵

- The distances to the spectroscopic sample of SNe Ia measured by two methods are consistent with a currently accelerating expansion at confidence levels from 99.5% (2.8 σ) to more than 99.9% (3.9 σ) for q₀ ≡ Ω_M/2 − Ω_Λ using the prior that Ω_M ≥ 0.
- The data favor eternal expansion as the fate of the universe at the 99.7% (3.0 σ) to more than 99.9% (4.0 σ) confidence level from the spectroscopic SN Ia sample and the prior that Ω_m ≥ 0.
- The systematic uncertainties do not provide a convincing substitute for a positive cosmological constant.

- └─A Brief Introduction
 - └─A Nobel Prize

Figure: Perlmutter (L), Riess (M), Schmidt (R)

└─A Brief Introduction

└─ Type Ia Supernovae

Supernovae

- SNe arise from thermonuclear explosions of stars/star systems.
- Often outshine entire galaxies.

Figure: Holy Roman Emperor Henry III pointing up at a new star

└─A Brief Introduction

└─ Type Ia Supernovae

- SNe are generally classified into two main categories according to spectroscopic features: Type I and Type II SNe⁶
- Type I SNe have no hydrogen (H) lines in their spectra, whereas Type II SNe contain obvious H lines.
- Type Ia SNe (SNe Ia) are a subclass of Type I, which exhibit strong singly ionized silicon (Si) absorption (Si II at 6150, 5800 and 4000 Å) features in their spectra.

A Brief Introduction

└─ Type Ia Supernovae

Type la Supernovae

- SNe Ia are widely thought to be thermonuclear explosions of white dwarfs (WDs) in binary systems⁷.
- B-band is about $M_B = -19.5$
- Chandrasekhar limit: A consequence of competition between gravity and electron degeneracy pressure.
- Predominantly, Roche Lobe Overflows and Tidal Stripping causes one of the binaries to collapse to supersede their Chandrashekhar limit.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A PROBLEM

A Problem

└─All is not well with ∧CDM

All is not well with ΛCDM

- The ACDM is still the best and most elegant model we have to explain the Universe as a whole.
- An overview paper summarizing the cosmological legacy of the Planck mission (Planck Collaboration et al., 2020c) concluded: The 6-parameter ACDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters.

A Problem

The Hubble Tension

The Hubble Tension

Planck Collaboration et al., 2020 decrees a Hubble constant of:

$$H_0 = 67.43 \pm 0.49 \mathrm{km s^{-1} Mpc^{-1}}$$

In contrast, *Riess et al., 2022* says that the latest value of the Hubble constant measured by the SH0ES collaboration based on Cepheid variables and Type Ia supernovae (SN) is:

$$H_0 = 73.01 \pm 0.99 \mathrm{km s^{-1} Mpc^{-1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Problem

The Hubble Tension

- There is a huge degree of redundancy in the Planck data and so there are many different ways in which the data can be partitioned, and there is a very low chance it is incorrect.
- On the other hand, JWST photometry by the SH0ES team is in very good agreement with their earlier HST results, effectively eliminating systematics associated with crowded field photometry as the source of the tension⁸.
- It is therefore reasonable to conclude that either the ACDM model is missing new physics or the SH0ES estimate is biased in some way.

Investigating the Hubble Tension with Type Ia Supernovae

A Problem

L The Hubble Tension

Model	Planck TTTEEE	Planck TTTEEE+BAO
ACDM	67.44 ± 0.58	67.69 ± 0.42
$\Lambda CDM + m_{\nu}$	66.8 ± 1.2	67.8 ± 0.6
$\Lambda CDM + N_{\nu}$	66.4 ± 1.6	67.4 ± 1.2
$\Lambda CDM + m_{\nu} + N_{\nu}$	$66.1^{+1.9}_{-1.6}$	67.5 ± 1.2
$\Lambda CDM + m_{str} + N_{\nu}$	67.1 ± 0.7	$67.89^{+0.45}_{-0.69}$
$\Lambda CDM + n_{run}$	67.25 ± 0.6	67.66 ± 0.45
$\Lambda CDM + \Omega_k$	56 ± 4	67.9 ± 0.7
$\Lambda CDM + w_0 + w_a$	-	64.9 ± 2.1

Figure: Hubble Tension in extended ΛCDM models with 1σ errors⁹

No modifications reconcile this tension.

⁹Source: Efstathiou, Challenges to the Λ CDM Cosmology 2024 \rightarrow ($\Xi \rightarrow$ $\Xi \rightarrow$ $\neg \land \bigcirc$

Investigating the Hubble Tension with Type Ia Supernovae

- A Problem
 - -The Hubble Tension

For a more extensive record, refer to Di Valentino et al. In the Realm of the Hubble tension - a Review of Solutions.

└─Our Methodology

Our Methodology

└─Our Methodology

└─ The Pantheon Sample

- We follow a similar methodology to Riess, Perlmutter, Scolnic and others in their 1998 breakthrough.
- To use SNe Ia as cosmological probes we have to consider their observed distance modulus, μ_{obs}, and compare with their theoretical distance modulus μ_{th}, defined as follows:

$$\mu_{th} = 5\log d_L + 25$$

 In the current analysis, we make use of the Pantheon sample. This is a catalogue of 1048 SNe Ia with data from different surveys combined together in one collection. The μ_{obs} can be obtained through the modified Tripp formula (Tripp 1998):

$$\mu_{obs} = m_B - M + \alpha x_1 - \beta c + \Delta M + \Delta B$$

└─Our Methodology

└─ The Pantheon Sample

- In the Pantheon release, the absolute magnitude is fixed to M = -19.35 such that $H_0 = 70.0$ kms⁻¹ Mpc⁻¹.
- In our work, we have recalibrated to match the updated value of $H_0 = 73.04 \text{kms}^{-1} \text{Mpc}^{-1}$, from SH0ES Collboration., 2022.

(a) Hubble Diagram for Pantheon

(b) Covariance Matrix for Pantheon

└─Our Methodology

-The Pantheon Sample

Figure: Histogram of Spectroscopically confirmed SNe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- └─Our Methodology
 - └─ The Pantheon Sample

Figure: The R98 constraints vs Pantheon Constraints

ヘロト ヘヨト ヘヨト ヘヨト

Ξ.

└─Our Methodology

Redshift Binned Analysis

Redshift Binned Analysis

We define the distance residuals

$$\Delta \mu = \mu_{\rm obs} - \mu_{\rm th}$$

$$\chi^2 = \Delta \mu^T \mathcal{C}^{-1} \Delta \mu$$

$$\mathcal{C} = \mathcal{C}_{\mathsf{sys}} + \mathcal{D}_{\mathsf{stat}}$$

D_{stat} is a diagonal matrix that includes the total distance errors associated with every SN. The latter takes into account the contributions from photometric error, mass step correction, bias, peculiar velocity and redshift in quadrature, stochastic gravitational lensing, and intrinsic scatter. └─Our Methodology

Redshift Binned Analysis

- A Bit More on the Covariance Matrices...
 - It is straightforward to build submatrices containing statistical contributions from each SN from D_{stat}, since D_{stat} is diagonal.
 - However, the presence of the C_{sys} matrix, which is not diagonal, led us to write a customized code that extracts the submatrices, including also systematic errors.

└─Our Methodology

Posterior and Likelihoods: MCMC Sampling

Posterior and Likelihoods: MCMC Sampling

- We perform a Markov Chain Monte Carlo (MCMC) analysis using the D'Agostini method (D'Agostini 1994) to sample a posterior distribution and obtain the confidence intervals of the H₀ parameter at the 68% and 95% levels.
- MCMC algorithms generate a sample distributed according to the target distribution in a probabilistic fashion. The most common uses the **Metropolis-Hastings algorithm** as an example.

└─Our Methodology

Posterior and Likelihoods: MCMC Sampling

MCMC: Markov Chain Monte Carlo

- For exploring the likelihood function L or the posterior distribution p_{new} of the parameters, Markov chain Monte Carlo (MCMC) algorithms are today's method of choice when no functional expressions are available.
- It is based on a random walk in the parameter space of the likelihood, serially proposing new positions that are accepted or rejected according to its likelihood weights
- Assume we are interested in a probability density function p(θ) which is not given explicitly but can be calculated numerically up to a constant factor. If we want to learn about p(θ) we need to estimate it from a finite number of numerical evaluations.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Results

Results

Results

Evolution of the Hubble Constant with Redshift

Evolution of the Hubble Constant with Redshift

 Our tests assume both the ΛCDM and the wCDM models, separately.

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

• For both the Λ CDM and the $w_0 w_a$ CDM models, we set the following priors for MCMC: $60 \text{kms}^{-1} \text{Mpc}^{-1} < H0 < 80 \text{kms}^{-1} \text{Mpc}^{-1}$. Once we have obtained the values of H_0 for our bins, we perform a nonlinear fit of H_0 with the following functional form:

$$H_0(z) = rac{ ilde{H}}{(1+z)^lpha}$$

We here remark that the choice of this function is standard for characterizing the evolution of many astrophysical sources, and it is widely used for GRBs and quasars.

Results

Evolution of the Hubble Constant with Redshift

Equipopulation Binning Prescription

Investigating the Hubble Tension with Type Ia Supernovae

Results

Evolution of the Hubble Constant with Redshift

Figure: Pantheon 12 Bin prescription

Results

Evolution of the Hubble Constant with Redshift

Pantheon, Flat ACDM Model, Fixed Ω_{0m}				
Bins	$ ilde{H}_0$	α	α/σ_{lpha}	
	$({\rm km \ s^{-1} \ Mpc^{-1}})$			
12	70.220 ± 0.179	0.016 ± 0.010	1.6	
Pantheon Flat wow_CDM Model Fixed Qo_				
Tanencon, That wowa ODM Model, Thed stom				
Bins	$ ilde{H}_0$	α	α/σ_{lpha}	
	$({\rm km~s^{-1}~Mpc^{-1}})$			
12	72.769 ± 0.191	0.114 ± 0.010	11.4	

Figure: Table for equipopulation prescription

Results

Evolution of the Hubble Constant with Redshift

Equivolume Binning Prescription

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Investigating the Hubble Tension with Type Ia Supernovae

Results

Evolution of the Hubble Constant with Redshift

Figure: Pantheon ACDM cosmology

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Results

Evolution of the Hubble Constant with Redshift

Pantheon, Flat ACDM Model, Varying H_0					
Bins	$ ilde{H}_0$	α	α/σ_{lpha}		
	$\left(\mathrm{km~s^{-1}~Mpc^{-1}}\right)$				
10	70.3071 ± 0.161727	0.0273713 ± 0.00523835	5.22517		
13	70.9382 ± 0.163	0.0650801 ± 0.00426845	15.2468		

Figure: Table for equivolume prescription

(ロ)、(型)、(E)、(E)、 E) の(()

Results

Evolution of the Hubble Constant with Redshift

DES+Pantheon, Flat ACDM Model, Varying H_0					
Bins	$ ilde{H}_0$	α	α/σ_{lpha}		
	$({\rm km \ s^{-1} \ Mpc^{-1}})$				
3	74.6628 ± 0.18689	0.290588 ± 0.00703825	41.287		
4	67.9554 ± 0.0325176	0.0239669 ± 0.00167428	14.3147		

Figure: Table for DES+Pantheon in ACDM cosmology

Discussion and Interpretation

DISCUSSION AND INTERPRETATION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Discussion and Interpretation

Astrophysical Selection Biases

Astrophysical Selection Biases

- The average stellar ages and metallicities evolve with redshift, so it may happen that the average corrected SN Ia brightness at higher redshift will be fainter than the one at lower redshift if the observed bias is caused by the progenitor age or metallicity¹⁰
- Sullivan et al. (2010) have suggested using host-galaxy mass as a third SN Ia brightness-correction parameter (after stretch and color), and this is done in Scolnic et al. (2018): many of the associated systematic uncertainties of these effects are on the 1% level
- Intergalactic dust extinction

Discussion and Interpretation

L Theoretical Interpretation

Theoretical Interpretation

- Local inhomogeneties: A perturbation in density causes a perturbation in the expansion rate¹¹. Lemaître-Tolmann-Bondi-like models?
- Modified gravity theories: f(R) theories

Discussion and Interpretation

└─ Theoretical Interpretation

f(R) theories

- Restates a more general Eisntein-Hilbert action to include some function *f* or the Ricci scalar.
- We hypothesise that the kinetic term of the Lagrangian contains information about the universe's total energy density. We suggest that this scenario can interpret our results, because the possibility of dealing with a significant universe acceleration requires a slow dynamics of the field, allowing that its potential term mimics a cosmological constant.
- The scalar field kinetic term, which contains second-order derivatives, is negligible and thus remains close to the ACDM model.
- φ(z) ≈ (1 + z)^{2α} represents a scalar-field near-frozen dynamics, ensuring a very slow kinetic contribution to the universe energy density. This expression can be compared to our results.

Conclusions

Conclusions

- We find that there is a slow evolution of *H*₀ with redshift resulting from the fitting of various binning prescriptions.
- Although we considered a different number of bins, we obtain the same results for a decreasing $H_0(z)$ and with the evolutionary parameters α consistent with those cases of all bins.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Conclusions

- Interestingly, if the evolutionary pattern of $H_0(z)$ is extrapolated at the redshift of the most distant galaxy, z = 11.09, and of the last scattering surface, z = 1100, we obtain a value of $H_0(z)$ that is compatible within 1σ with the H_0 found by Planck in both the Λ CDM and the $w_0 w_a$ CDM models, thus reducing the H_0 tension, albeit with larger errors.
- We have hence reduced the Hubble Tension to some respect, albeit, more surveys need to be done to reduce the error bars.
- Our results could highlight an intrinsic evolutionary behavior of $H_0(z)$: it is no longer a discrepancy between SNe Ia and Planck data, but an effect, in principle, observable at any redshift.
- Implications of a modification to the ACDM with near-frozen dynamics of a scalar field.