Estimating Central BH mass in AGN using reverberation mapping

By Kartik Singh

Content

- Main idea
- What is an AGN? And its spectra
- The unified AGN model
- Cloud model
- Reverberation mapping
 - Issues
 - Different approaches
 - Results

Main idea

- Use virial theorem
 - The radius of satellite orbit
 - The speed of the satellite
- We don't require the mass of satellite!
- How do we get the radius and velocity?
 - Ans: reverberation mapping

What is an AGN

AGN spectra

A continuous emission and a line emission.

The continuous emission closely follows a power law, for a wide range of frequencies

There are two types of line emissions depending on the width: broad and narrow.

This already hints that this is a superposition of light from multiple sources.

How do you explain this spectra?

Unified AGN model

Cloud model

- How are the Broad emission lines generated
 - BLR clouds produce broad lines by photoionization and recombination
 - Radiation pressure pushes the BLR away from the center. The **width is due to Doppler broadening**.
- The structure of BLR
 - The **BLR is radially stratified**, majority flux comes from a narrow range
 - The BLR consists of numerous discrete gas nebula clouds (aka BLR clouds).

Reverberation mapping

- 1. The contin. source, much smaller than BLR.
- 2. BLR clouds themselves occupy a small fraction of the total volume.
- 3. There is a simple, not necessarily linear, relationship between the observable UV/optical contin. flux and the ionizing contin. flux.
- 4. The light travel time is much large compared to the cloud response to continuum variations
- 5. The light travel time is short compared to the time scale over which BLR geometry changes.

Reverberation mapping

- 1. The contin. source, much smaller than BLR.
- 2. BLR clouds themselves occupy a small fraction of the total volume.
- 3. There is a simple, not necessarily linear, relationship between the observable UV/optical contin. flux and the ionizing contin. flux.
- 4. The light travel time is much large compared to the cloud response to continuum variations
- 5. The light travel time is short compared to the time scale over which BLR geometry changes.

$$\Delta L(t) = \int \Psi(\tau) \Delta C(t-\tau) d\tau$$

Figure 1: Light from a thin spherical BLR

Basic procedure

- Get data over an extended period of time, probably years*
- Pick a good line,
 - Most of them are too weak
 - CIII line is too sophisticated
 - Mg II is usually the best, because it has low ionization number
 - CIV is also used
- Find time delay with max cross correlation*

Basic procedure

- Get data over an extended period of time, probably years*
- Pick a good line,
 - Most of them are too weak
 - CIII line is too sophisticated
 - Mg II is usually the best, because it has low ionization number
 - CIV is also used
- Find time delay with max cross correlation*

$$F_{CCR}(\tau) = \int \Delta L(t) \Delta C(t-\tau) dt$$

Basic procedure

- Get data over an extended period of time, probably years*
- Pick a good line,
 - Most of them are too weak
 - CIII line is too sophisticated
 - Mg II is usually the best, because it has low ionization number
 - CIV is also used
- Find time delay with max cross correlation*
- Compute radius and the mass

$$F_{CCR}(\tau) = \int \Delta L(t) \Delta C(t-\tau) dt$$

Data is kinda.... bad

Issues

- Correlated errors in CIV emission line
- Non uniform time interval between data points

Interpolated Cross Correlation Function

- Uses linearly interpolate to fill the gaps
- Apply on each series, take avg

Interpolated Cross Correlation Function

- Uses linearly interpolate to fill the gaps
- Apply on each series, take avg

Drawbacks

- Validity of interpolation for non-uniform time intervals
- Peak at zero time delay
- Hard to quantify error

Discrete Correlation function

- Creates bins for each time lag, with some tolerance
- Takes the average of all data points that are within each bin

$$\text{UDCF}_{ij} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{(\sigma_a^2 - e_a^2)(\sigma_b^2 - e_b^2)}} ,$$

pairwise lag
$$\Delta t_{ij} = t_j - t_i$$
.

DCF(τ) to be measured. Averaging over the M pairs for which $\tau - \Delta \tau/2 \le \Delta t_{ij} < \tau + \Delta \tau/2,$ DCF(τ) = $\frac{1}{M}$ UDCF_{ij}. (4)

Discrete Correlation function

- Creates bins for each time lag, with some tolerance
- Takes the average of all data points that are within each bin

Drawbacks

• Its worse in general, (lol)

$$\text{UDCF}_{ij} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{(\sigma_a^2 - e_a^2)(\sigma_b^2 - e_b^2)}} \,,$$

pairwise lag
$$\Delta t_{ij} = t_j - t_i$$
.

DCF(τ) to be measured. Averaging over the M pairs for which $\tau - \Delta \tau/2 \le \Delta t_{ij} < \tau + \Delta \tau/2,$ DCF(τ) = $\frac{1}{M}$ UDCF_{ij}. (4)

Model Parameters			Sampling		Interpolation Method					DCF Method			
R (light days) (1)	A (2)	τ _{expected} (days) (3)	Number of Epochs N (4)	$\begin{array}{c} \text{Mean} \\ \text{Interval } \overline{\Delta t} \\ \text{(days)} \\ \text{(5)} \end{array}$	$\langle au_{peak} angle \ (days) \ (6)$	Median (days) (7)	$\Delta \tau_{67}$ (days) (8)	Δau_{90} (days) (9)	$\Delta \tau_{GP}$ (days) (10)	Mode (days) (11)	P _{mode} (12)	Plower (13)	P _{upper} (14)
20	0	20.0	40	5.10	18.59	20	+3/-4	+5/-8	3.13 ± 2.12	20	0.37	0.31	0.32
			30	6.86	18.92	19	+4/-3	+8/-7	3.69 ± 2.38	18	0.35	0.20	0.45
			24	8.65	19.91	20	+3/-4	+7/-8	4.26 ± 2.56	24	0.38	0.46	0.16
			20	10.47	18.96	19	+5/-4	+11/-8	4.36 ± 2.98	20	0.47	0.21	0.32
			16	13.27	18.81	19	+5/-5	+11/-9	4.74 ± 3.04	26	0.38	0.43	0.19
			13	16.58	17.90	19	+6/-6	+16/-13	5.54 ± 3.52	16	0.46	0.16	0.37
			10	22.11	16.24	19	+8/-9	+19/-37	5.85 ± 4.34	22	0.44	0.25	0.31
			8	1 28.43	17.07	18	+10/-9	+50/-75	6.89 ± 4.70	28	0.42	0.30	0.28
			6	^{1'} 39.80	20.42	18	+26/-17	+78/-68	7.34 ± 5.54	39	0.37	0.43	0.20
20	1	26.7	40	5.10	27.99	28	+3/-2	+5/-4	3.03 ± 1.95	30	0.47	0.42	0.11
			30	6.86	27.04	28	+3/-3	+5/-6	3.26 ± 2.23	30	0.52	0.32	0.16
			24	8.65	27.03	28	+3/-4	+6/-7	3.80 ± 2.58	32	0.48	0.44	0.09
			20	10.47	25.81	28	+3/-4	+6/-9	4.14 ± 2.91	30	0.59	0.23	0.18
			16	13.27	27.03	28	+4/-5	+8/-11	4.73 ± 3.17	26	0.56	0.17	0.27
			13	16.58	24.46	27	+5/-6	+14/-23	5.22 ± 3.53	32	0.48	0.31	0.21
			10	22.11	24.61	27	+10/-9	+48/-94	5.08 ± 3.96	22	0.40	0.18	0.41
			8	28.43	24.76	27	+12/-12	+57/-79	6.27 ± 4.55	28	0.46	0.23	0.31
			6	39.80	24.64	26	+33/-22	+71/-98	6.28 ± 5.44	39	0.45	0.35	0.20
10	0	10.0	40	5.10	9.94	10	+1/-2	+3/-3	3.18 ± 2.12	10	0.72	0.16	0.12
			30	6.86	9.97	10	+1/-2	+3/-3	3.85 ± 2.48	12	0.63	0.28	0.10
			24	8.65	10.08	10	+2/-2	+3/-4	4.50 ± 2.66	8	0.60	0.06	0.34
			20	10.47	9.96	10	+2/-2	+4/-4	4.51 ± 3.05	10	0.75	0.09	0.16
			16	13.27	9.63	10	+2/-3	+4/-6	5.08 ± 3.21	13	0.63	0.21	0.16
			13	16.58	9.65	10	+3/-4	+8/-7	5.50 ± 3.47	16	0.52	0.32	0.16
			10	22.11	7.76	9	+5/-5	+13/-14	6.14 ± 4.21	0	0.33	0.17	0.50
			D	99 49	7 08	0	171 0	191/ 00	0 69 1 4 77	0	0.96	0.16	0 45

TABLE 1 Monte Carlo Simulation Results for $1/f^{2.5}$ Power Spectrum

References

- [White and Peterson, 1994] White, R. J. and Peterson, B. M. (1994). Comments on cross-correlation methodology in variability studies of active galactic nuclei. Publications of the Astronomical Society of the Pacific, 106(702):879.
- [Baldwin et al., 1995] Baldwin, J., Ferland, G., Korista, K., and Verner, D. (1995). Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines. Astrophysical Journal, Letters, 455:L119.
- [Peterson, 1997] Peterson, B. M. (1997). An Introduction to Active Galactic Nuclei.