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Padé-Borel reconstructions of
Euler-Heisenberg Lagrangians
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EH Lagrangian

§ The classical Maxwell equations develop corrections at short
distances due to vacuum fluctuations.

§ The classical Maxwell equations are linear, which means that
classical EM fields can be added to each other without any
”interference terms”. This is not true in the quantum regime.

§ The Euler-Heisenberg Lagrangian gives quantum corrections to
the classical EM Lagrangian.

§ The most significant prediction of the EH Lagrangian is
Schwinger pair production: the spontaneous production of
electron-positron pairs in high electric fields.
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Experimental evidence I
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Experimental Evidence II
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Before we start the math...

Some prerequisites to know:
1. Natural units: c “ 1, ℏ “ 1.
2. Summation conventions: V µ “ pV0,V1,V2,V3q represents a

Lorentz vector (transforms as a vector under Lorentz
transformations), Vµ “ pV0,´V1,´V2,´V3q is the dual vector.

3. Repeated indices V µVµ means that the indices are being
summed over.
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Schwinger Pair Production

§ The Dirac sea model- vacuum is made up of a sea of electrons
with negative energy. Holes in the sea are interpreted as
positrons.

§ Imagine a potential barrier of height V . This potential barrier
decreases the energy of the positive energy levels.

§ When the potential barrier is of height V ě 2m, the energy dips
into negative energy levels and makes the possibility of pair
production possible.
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What is the system EHL describes?

§ Imagine a constant electromagnetic field in vacuum.
§ This electromagnetic field is produced by a source Jµ (made up
of charge and currents). This source keeps the electromagnetic
field constant no matter what.

§ The Lagrangian density of such a system is given by

L“ ´
1
4
FµνFµν ` JµAµ (1)

where Fµν is the electromagnetic tensor. (check that this
Lagrangian is gauge invariant)

§ Using the EL equations gives us Maxwell’s equations.
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What do corrections look like?

§ The corrections due to vacuum fluctuations are to the source,
and not the field, since the value of the field is to be kept
constant.

§ The corresponding corrections to the Lagrangian is in terms of
the gauge invariant quantity

f pFµνF
µνq (2)

§ There are multiple orders of corrections. The nth correction is
called the n-loop correction.

§ Each correction is of the order Opq2nq, where q is the charge of
the particle whose fluctuations the EM interacts with.
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Feynman diagrams
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Analytical nature of the corrections

Figure: Freeman Dyson, 1923-2020

Surprising
fact- the corrections to the
Lagrangian are not analytic!

Dyson predicted this.
His argument was that because
the behaviour in the electric
and magnetic field regime
is fundamentally different, the
corrections cannot be analytic.
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Consequence of non-analyticity

When one tries to expand the corrections about B “ 0 (or E “ 0), they
find an expansion which doesn’t converge anywhere! This is a
problem, because in most cases, it is only possible to calculate the
coefficients of the weak-field expansions and not the whole function.
How do we get information from these coefficents that are part of a
divergent series?

We use the technique of Padé-Borel resummation
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Motivation

Suppose the correction has a weak-field expansion (for pure
magnetic fields) of the form

f pBq „

8
ÿ

n“0

anB
n (3)

In most cases, an has a factorial divergence. Therefore, we define a
new sum, called the Borel sum:

f̂ pBq “

8
ÿ

n“0

an
n!

Bn (4)

This series now has a finite radius of convergence. We can recover
the original function by doing a Laplace-like transform:

f pBq „

ż 8

0
dt e´t f̂ pBtq (5)
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Padé-Approximants

Now, we need a good function f̂ which we can integrate over. f̂
should have the desired weak-field expansion. For this, we use
rational functions called Padé-approximants:

PM
N ptq “

a0 ` a1t ` a2t
2 ` ¨¨ ¨ ` aM tM

1` b1t ` b2t2 ` . . . bN tN
(6)

Padé approximants are awesome because they have the uncanny
ability to provide good analytical continuations outside the domain of
convergence. More the value of N and M, the more coefficients you
need to construct it and better its accuracy
We substitute this function as f̂ and get the Padé-Borel resum
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Do PB resummations work?

Yes! They work exceptionally well!
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Pair production predictions

One of the major consequences of the non-analyticity of the EHL is
that it obtains a non-trivial imaginary part in the electric field regime.
There is no way we could’ve seen this in the weak-field expansion.
However, the PB sum predicts the imaginary part accurately.
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Conclusion

Divergent series are not bad, it means that there is weird physics
hidden in there somewhere! PB resummations helps us extract this
weird physics from unsummable series.


	Background
	EH Lagrangian-Introduction
	Experimental evidence
	Schwinger Pair Production

	Diving into the EHL
	Description of the system
	Form of the corrections
	Dyson's argument

	Padé-Borel sums
	Motivation
	Padé-Approximants
	Calculating pair-production rates

	Conclusion

