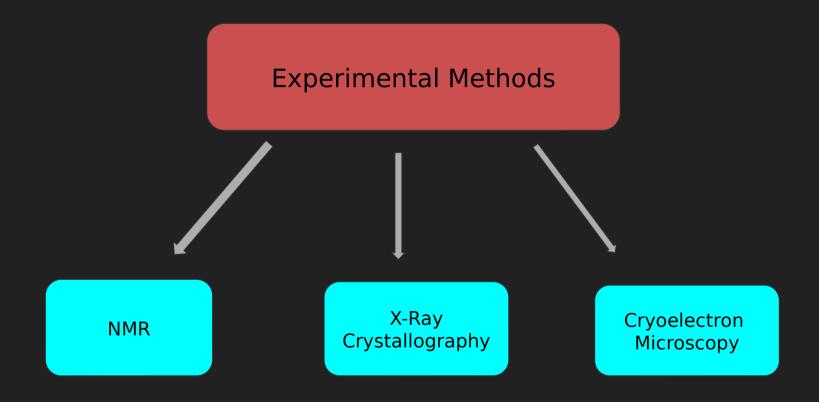
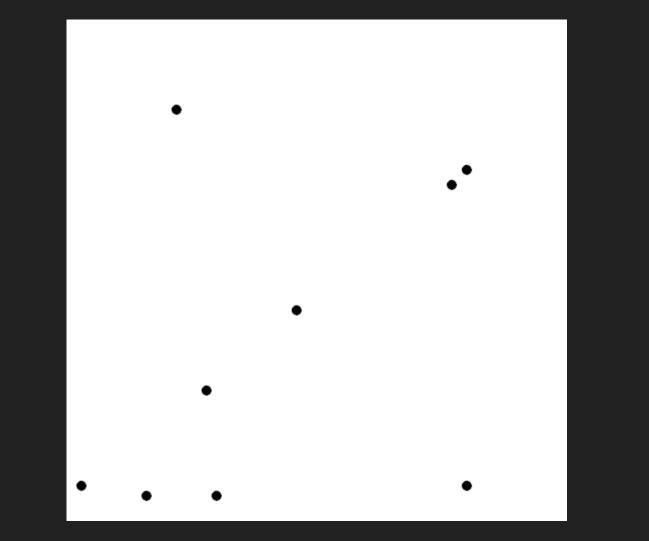
Knowledge-Based Statistical Potentials



Computational Methods

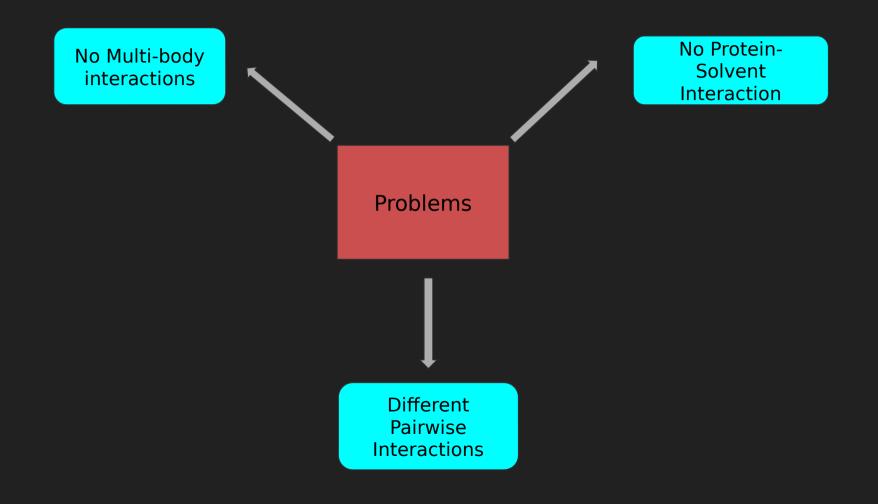
Molecular-Mechanics Force Fields

Knowledge-based Statistical Potentials



$$P(r) = \frac{1}{Z} e^{-\frac{F(r)}{kT}}$$

$$\Delta F(r) = -kT \ln \frac{P(r)}{Q_R(r)} - kT \ln \frac{Z}{Z_R}$$



$$F = -K_B T ln(Z)$$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < j} U(r_{ij})$$

$$Z(N,V,T) = \frac{1}{N!(2\pi\hbar)^{3N}} \int \prod_{i=1}^{N} d^{3}p_{i}d^{3}r_{i}e^{-\beta H}$$

$$Z(N,V,T) = \frac{1}{N!(2\pi\hbar)^{3N}} \left[\int \prod_i d^3 p_i e^{-\beta \sum_j \frac{p_j^2}{2m}} \right] \times \left[\int \prod_i d^3 r_i e^{-\beta \sum_{j < k} U(r_{jk})} \right]$$

$$Z(N,V,T) = \frac{1}{N!\lambda^{3N}} \int \prod_{i} d^3 r_i e^{-\beta \sum_{j < k} U(r_{jk})}$$

Cluster Expansion and f-Mayer Function

$$f(r) = e^{-\beta U(r)} - 1$$
$$f_{ij} = f(r_{ij})$$

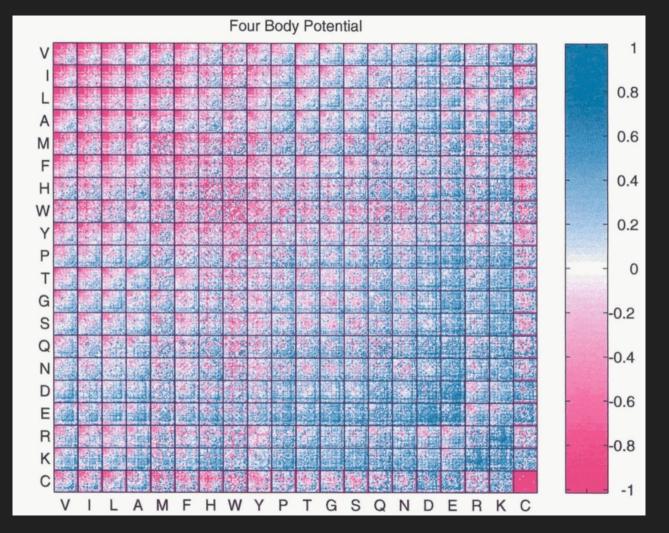
$$Z(N, V, T) = \frac{1}{N!\lambda^{3N}} \int \prod_{i} d^{3}r_{i} \prod_{j>k} (1 + f_{jk})$$
$$Z(N, V, T) = \frac{1}{N!\lambda^{3N}} \int \prod_{i} d^{3}r_{i} \left(1 + \sum_{jk,l>m} f_{jk} f_{lm} + \dots \right)$$

$$Z(N,V,T) = \frac{1}{N!\lambda^{3N}} \sum_{G} W[G]$$

$$Z(N, V, T) = \frac{1}{\lambda^{3N}} \sum_{\{m_l\}} \prod_l \frac{U_l^{m_l}}{(l!)^{m_l} m_l!}$$

Hypothesized Knowledge-based Statistical Potential

$$F = -K_B T ln \left(\frac{1}{\lambda^{3N}} \sum_{m_l} \prod_l \frac{U_l^{m_l}}{(l!)^{m_l} m_l!}\right)$$



Advantages of the Statistical Potential

- 1. Now we have multiple body interaction. We have been able to derive a general N-body interaction term.
- 2. Adding a weight factor to f-Mayer function corresponding to the depth of interaction of amino residues, we can take into account the protein-solvent interactions.
- 3. f-Mayer function represents the strength of the interaction. So giving different ranks to different kind of interactions allows us to include multiple interactions.

References

1Characterization of Physicochemical Environments of Proteins (PhD thesis) Kuan Pern 2Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment by Peter J. Munson and Raj K. Singh 3Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized by Thomas Hamelryck1 * ., Mikael Borg1., Martin Paluszewski1., Jonas Paulsen1 , Jes Frellsen1 , Christian Andreetta1, Wouter Boomsma2,3, Sandro Bottaro2, Jesper Ferkinghoff-Borg2* 4A New approach to protein folding D.T. Jones, W.R. Taylor, J.M. Thormton 5Knowledge-based potentials for proteins, Manfred I Sippl 6 Recognition of Errors in Three-Dimensional Structures of Proteins, Manfred J. Sippl 7Statistical potential for assessment and prediction of protein structures by Min-yi Shen and Andrej Sali

Thank You for your attention